Phenotypically Constrained Boolean Network Inference with Prescribed Steady States Conference Paper uri icon

abstract

  • In this paper, we investigate a phenotypically constrained inference algorithm to reconstruct genetic regulatory networks modeled as Boolean networks (BNs). Based on a previous universal Minimum Description Length (uMDL) network inference algorithm, we study whether adding the prior information based on prescribed attractors or steady states can help better reconstruct the underlying gene regulatory relationships. Comparing the network inference performance with and without prescribed steady states, the experiments based on randomly generated networks as well as a metastatic melanoma network have shown that the phenotypically constrained inference obtains improved performance when we have small numbers of state transition observations. © 2013 IEEE.

author list (cited authors)

  • Qian, X., & Dougherty, E. R.

citation count

  • 1

publication date

  • November 2013

publisher