GTP cyclohydrolase 1 inhibition attenuates vasodilation and increases blood pressure in rats. Academic Article uri icon


  • GTP cyclohydrolase 1 is the rate-limiting enzyme in production of tetrahydrobiopterin, a necessary cofactor for endothelial nitric oxide synthase. We tested the hypothesis that inhibition of tetrahydrobiopterin synthesis impairs endothelium-dependent relaxation and increase blood pressure in rats. 2,4-Diamino-6-hydroxypyrimidine (DAHP), a GTP cyclohydrolase 1 inhibitor, was given in drinking water (approximately 120 to male Sprague-Dawley rats for 3 days. Systolic blood pressures were measured (tail-cuff procedure) for 3 days before and each day during DAHP treatment. Blood pressure was significantly increased after DAHP treatment (122 +/- 2 vs. 154 +/- 3 mmHg before and after DAHP, respectively; P < 0.05). Endothelium-intact aortic segments from pentobarbital sodium-anesthetized rats were isolated and hung in organ chambers for measurement of isometric force generation. Aortas from DAHP-treated rats exhibited a decreased maximal relaxation to ACh compared with controls [% relaxation from phenylephrine (10-7 M)-induced contraction: DAHP 57 +/- 6% vs. control 79 +/- 4%; P < 0.05]. Relaxation responses to A-23187 were also decreased in aortas from DAHP-treated rats compared with controls. Incubation with sepiapterin (10-4 M, 1 h), which produces tetrahydrobiopterin via a salvage pathway, restored relaxation to ACh in aortas from DAHP-treated rats. Superoxide dismutase significantly increased ACh-induced relaxation in aortas from DAHP-treated rats, whereas catalase had no effect. Endothelium-independent relaxation to sodium nitroprusside in aortas from DAHP-treated rats was not different from control rats; however, nitric oxide synthase inhibition increased sensitivity to sodium nitroprusside in aortas from DAHP-treated rats. These results support the hypothesis that GTP cyclohydrolase 1 inhibition decreases relaxation and increases blood pressure in rats.

published proceedings

  • Am J Physiol Heart Circ Physiol

author list (cited authors)

  • Mitchell, B. M., Dorrance, A. M., & Webb, R. C.

citation count

  • 27

complete list of authors

  • Mitchell, Brett M||Dorrance, Anne M||Webb, R Clinton

publication date

  • November 2003