We are a synthetic biology and bioengineering lab focused on developing technologies that enable remote and programmable control of protein activity, cell signaling and designer cells. We pioneer chemical and synthetic biology approaches to address challenges in health and disease. We are particularly interested in (i) illuminating novel regulatory mechanisms of signal transduction that remain unresolved in Ca2+ signaling and inter-organelle communications; (ii) pioneering widely-applicable molecular tools for precise control of cellular events, (epi)genome engineering, and gene transcription; and (iii) developing innovative theranostic devices, programmable biologics and intelligent cell-based therapies (CAR-T) for cancer and neurodegeneration intervention. The tight integration among mechanistic studies, biomedical engineering, and translational sciences is a hallmark of my research. See highlights in: "Let there be light" (Scientia); "Optogenetics sparks new research tool" (NIH Biomedical Beat)