Zhang, Xiong (2004-08). Consolidation theories for saturated-unsaturated soils and numerical simulation of residential buildings on expansive soils. Doctoral Dissertation. Thesis uri icon

abstract

  • The coupled and uncoupled consolidation theories for saturated-unsaturated soils have been discussed. A new method for constructing the constitutive surfaces for saturated-unsaturated soils has been proposed. The consolidation processes for saturated-unsaturated soils have been explained by thermodynamic analogue. One dimensional consolidation theory for saturated-unsaturated soils is presented and a new method is proposed to calculate the immediate settlement, total settlement and the time history of the consolidation settlement manually in the same way as what we have done for saturated soils with a higher accuracy. It makes the consolidation theory of unsaturated soils as applicable as that of saturated soils. This method can also be used to perform uncoupled two or three dimensional consolidation calculation for both expansive soils and collapsible soils. From the analysis, the equivalent effective stress and excessive pore water pressure can be easily calculated. At the same time, the physical meanings for the parameters in the constitutive laws for saturated-unsaturated are illustrated. A new set of the differential equations for the coupled two or three dimensional consolidation of saturated-unsaturated soils are proposed, together with the corresponding method to solve the differential equations. It is also proved numerically and analytically that during the consolidation process the Mandel-Cryer effect exists for unsaturated expansive soils and there is a ??reverse?? Mandel-Cryer effect for unsaturated collapsible soils. A new method is proposed to estimate the volume change of expansive soils.
    A complete system is proposed for the numerical simulation of residential buildings on expansive soils. The strength of this method lies in its use of simple and readily available historic weather data such as daily temperature, solar radiation, relative humidity, wind speed and rainfall as input. Accurate three dimensional predictions are obtained by integrating a number of different analytical and numerical techniques: different simulation methods for different boundary conditions such as tree, grass, and bare soils, coupled hydro-mechanical stress analysis to describe deformation of saturated-unsaturated soils, jointed elements simulation of soil-structure interaction, analysis of structure stress moment by general shell elements, and to assess structural damage by the smeared cracking model. The real-time and dynamic simulation results are consistent with filed measurements.

publication date

  • August 2004