selected publications academic article Celik, M., Sahutoglu, S., & Straube, E. J. (2020). CONVEX DOMAINS, HANKEL OPERATORS, AND MAXIMAL ESTIMATES. Proceedings of the American Mathematical Society. 148(2), 751-764. Celik, M., Sahutoglu, S., & Straube, E. J. (2020). COMPACTNESS OF HANKEL OPERATORS WITH CONTINUOUS SYMBOLS ON CONVEX DOMAINS. HOUSTON JOURNAL OF MATHEMATICS. 46(4), 1005-1016. Biard, S., & Straube, E. J. (2019). ESTIMATES FOR THE COMPLEX GREEN OPERATOR: SYMMETRY, PERCOLATION, AND INTERPOLATION. Transactions of the American Mathematical Society. 371(3), 2003-2020. Biard, S., & Straube, E. J. (2017). L-2-Sobolev theory for the complex Green operator. International Journal of Mathematics. 28(9), 1740006-1740006. Straube, E. J., & Zeytuncu, Y. E. (2015). Sobolev estimates for the complex Green operator on CR submanifolds of hypersurface type. Inventiones Mathematicae. 201(3), 1073-1095. Straube, E. J., & Zeytuncu, Y. E. (2015). Sobolev estimates for the complex Green operator on CR submanifolds of hypersurface type (vol 206, pg 81, 1991). Inventiones Mathematicae. 201(3), 1097-1098. Herbig, A., McNeal, J. D., & Straube, E. J. (2014). DUALITY OF HOLOMORPHIC FUNCTION SPACES AND SMOOTHING PROPERTIES OF THE BERGMAN PROJECTION. Transactions of the American Mathematical Society. 366(2), 647-665. Munasinghe, S., & Straube, E. J. (2012). Geometric Sufficient Conditions for Compactness of the Complex Green Operator. Journal of Geometric Analysis. 22(4), 1007-1026. Straube, E. J. (2012). THE COMPLEX GREEN OPERATOR ON CR-SUBMANIFOLDS OF C-n OF HYPERSURFACE TYPE: COMPACTNESS. Transactions of the American Mathematical Society. 364(8), 4107-4125. Celik, M., & Straube, E. J. (2009). Observations regarding compactness in the partial derivative-Neumann problem. Complex Variables and Elliptic Equations: an international journal. 54(3-4), 173-186. Straube, E. J. (2008). A sufficient condition for global regularity of the partial derivative-Neumann operator. Advances in Mathematics. 217(3), 1072-1095. Raich, A. S., & Straube, E. J. (2008). Compactness of the complex Green operator. Mathematical Research Letters. 15(4), 761-778. Munasinghe, S., & Straube, E. (2007). Complex tangential flows and compactness of the -Neumann operator. PACIFIC JOURNAL OF MATHEMATICS. 232(2), 343-354. Munasinghe, S., & Straube, E. J. (2007). Complex tangential flows and compactness of the partial derivative-Neumann operator. PACIFIC JOURNAL OF MATHEMATICS. 232(2), 343-354. Sahutoglu, S., & Straube, E. J. (2006). Analytic discs, plurisubharmonic hulls, and non-compactness of partial derivative-Neumann operator. Mathematische Annalen. 334(4), 809-820. Straube, E. J. (2004). Geometric conditions which imply compactness of the partial derivative-Neumann operator. Annales de l'Institut Fourier. 54(3), 699-+. Straube, E. J., & Sucheston, M. K. (2003). Levi foliations in pseudoconvex boundaries and vector fields that commute approximately with partial derivative. Transactions of the American Mathematical Society. 355(1), 143-154. Fu, S. Q., & Straube, E. J. (2003). Semi-classical analysis of Schrodinger operators and compactness in the partial derivative-Neumann problem (vol 271, pg 267, 2002). Journal of Mathematical Analysis and Applications. 280(1), 195-196. Fu, S. Q., & Straube, E. J. (2002). Semi-classical analysis of Schrodinger operators and compactness in the a (partial derivative)over-bar-Neumann problem. Journal of Mathematical Analysis and Applications. 271(1), 267-282. Straube, E. J., & Sucheston, M. K. (2002). Plurisubharmonic defining functions, good vector fields, and exactness of a certain one form. Monatshefte fuer Mathematik. 136(3), 249-258. Straube, E. J. (2001). Good Stein neighborhood bases and regularity of the -Neumann problem. Illinois Journal of Mathematics. 45(3), 865-871. Straube, E. J. (2001). Good Stein neighborhood bases and regularity of the partial derivative-Neumann problem. Illinois Journal of Mathematics. 45(3), 865-871. Boas, H. P., Fu, S. Q., & Straube, E. J. (1999). The Bergman kernel function: Explicit formulas and zeroes. Proceedings of the American Mathematical Society. 127(3), 805-811. Fu, S. Q., & Straube, E. J. (1998). Compactness of the partial derivative-Neumann problem on convex domains. Journal of Functional Analysis. 159(2), 629-641. Straube, E. J. (1997). Plurisubharmonic functions and subellipticity of the partial derivative-Neumann problem on non-smooth domains. Mathematical Research Letters. 4(4), 459-467. STRAUBE, E. J. (1995). A REMARK ON HOLDER SMOOTHING AND SUBELLIPTICITY OF THE PARTIAL-DERIVATIVE-NEUMANN OPERATOR. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. 20(1-2), 267-275. Boas, H. P., Straube, E. J., & Yu, J. Y. (1995). Boundary limits of the Bergman kernel and metric. Michigan Mathematical Journal. 42(3), 449-461. BOAS, H. P., & STRAUBE, E. J. (1993). DERHAM COHOMOLOGY OF MANIFOLDS CONTAINING THE POINTS OF INFINITE TYPE, AND SOBOLEV ESTIMATES FOR THE PARTIAL-DERIVATIVE-NEUMANN PROBLEM. Journal of Geometric Analysis. 3(3), 225-235. BOAS, H. P., & STRAUBE, E. J. (1992). THE BERGMAN PROJECTION ON HARTOGS DOMAINS IN C-2. Transactions of the American Mathematical Society. 331(2), 529-540. Boas, H. P., & Straube, E. J. (1992). On equality of line type and variety type of real hypersurfaces in Cn. Journal of Geometric Analysis. 2(2), 95-98. BOAS, H. P., & STRAUBE, E. J. (1991). SOBOLEV ESTIMATES FOR THE COMPLEX GREEN OPERATOR ON A CLASS OF WEAKLY PSEUDOCONVEX BOUNDARIES. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. 16(10), 1573-1582. BOAS, H. P., & STRAUBE, E. J. (1991). SOBOLEV ESTIMATES FOR THE DELTA-BAR-NEUMANN OPERATOR ON DOMAINS IN CN ADMITTING A DEFINING FUNCTION THAT IS PLURISUBHARMONIC ON THE BOUNDARY. Mathematische Zeitschrift. 206(1), 81-88. BOAS, H. P., & STRAUBE, E. J. (1990). EQUIVALENCE OF REGULARITY FOR THE BERGMAN PROJECTION AND THE DELTABAR-NEUMANN OPERATOR. Manuscripta Mathematica. 67(1), 25-33. BOAS, H. P., & STRAUBE, E. J. (1989). COMPLETE HARTOGS DOMAINS IN C2 HAVE REGULAR BERGMAN AND SZEGO PROJECTIONS. Mathematische Zeitschrift. 201(3), 441-454. STRAUBE, E. J. (1989). INTERPOLATION BETWEEN SOBOLEV AND BETWEEN LIPSCHITZ-SPACES OF ANALYTIC-FUNCTIONS ON STARSHAPED DOMAINS. Transactions of the American Mathematical Society. 316(2), 653-670. Straube, E. J. (1989). Interpolation between Sobolev and between Lipschitz spaces of analytic functions on starshaped domains. Transactions of the American Mathematical Society. 316(2), 653-671. BOAS, H. P., CHEN, S. C., & STRAUBE, E. J. (1988). EXACT REGULARITY OF THE BERGMAN AND SZEGO PROJECTIONS ON DOMAINS WITH PARTIALLY TRANSVERSE SYMMETRIES. Manuscripta Mathematica. 62(4), 467-475. BOAS, H. P., & STRAUBE, E. J. (1988). INTEGRAL-INEQUALITIES OF HARDY AND POINCARE TYPE. Proceedings of the American Mathematical Society. 103(1), 172-176. Boas, H. P., & Straube, E. J. (1988). Integral inequalities of Hardy and Poincar type. Proceedings of the American Mathematical Society. 103(1), 172-176. Straube, E. J. (1987). Power series with integer coefficients in several variables. Commentarii Mathematici Helvetici. 62(1), 602-615. Conway, J. B., Dudziak, J. J., & Straube, E. (1987). Isometrically removable sets for functions in the Hardy space are polar. Michigan Mathematical Journal. 34(2), 267-273. Straube, E. (1986). Orthogonal projections onto subspaces of the harmonic Bergman space. PACIFIC JOURNAL OF MATHEMATICS. 123(2), 465-476. Cima, J. A., & Straube, E. J. (1986). Boundary Uniqueness Theorems in C n. Transactions of the American Mathematical Society. 294(1), 333-333. Cima, J. A., & Straube, E. J. (1986). Boundary uniqueness theorems in C n extbf {C}^ n. Transactions of the American Mathematical Society. 294(1), 333-339. Straube, E. J. (1986). Exact regularity of Bergman, Szeg and Sobolev space projections in non pseudoconvex domains. Mathematische Zeitschrift. 192(1), 117-128. Straube, E. J. (1985). CR-distributions and analytic continuation at generating Edges. Mathematische Zeitschrift. 189(1), 131-142. Straube, E. (1981). On the existence of invariant, absolutely continuous measures. Communications in Mathematical Physics. 81(1), 27-30. book Straube, E. J. (2010). Lectures on the L2-Sobolev Theory of the [d-bar]-Neumann Problem. European Mathematical Society. chapter Straube, E. J. (2010). Compactness. LECTURES ON THE L2-SOBOLEV THEORY OF THE DELTA-NEUMANN PROBLEM. (pp. 74-125). Straube, E. J. (2010). Introduction. LECTURES ON THE L2-SOBOLEV THEORY OF THE DELTA-NEUMANN PROBLEM. (pp. 1-+). Straube, E. J. (2010). Regularity in Sobolev spaces. LECTURES ON THE L2-SOBOLEV THEORY OF THE DELTA-NEUMANN PROBLEM. (pp. 126-183). Straube, E. J. (2010). Strictly pseudoconvex domains. LECTURES ON THE L2-SOBOLEV THEORY OF THE DELTA-NEUMANN PROBLEM. (pp. 51-73). Straube, E. J. (2010). The L-2-theory. LECTURES ON THE L2-SOBOLEV THEORY OF THE DELTA-NEUMANN PROBLEM. (pp. 9-50). Fu, S., & Straube, E. J. (2001). Compactness in the -Neumann problem. McNeal, J. D. (Eds.), Complex Analysis and Geometry. (pp. 141-160). DE GRUYTER. Boas, H. P., & Straube, E. J. (1999). Global Regularity of the -Neumann Problem: A Survey of the L2-Sobolev Theory. Schneider, M., & Siu, Y. (Eds.), Several Complex Variables. (pp. 79-111). Cambridge University Press. conference paper Ayyr, M., & Straube, E. J. (2015). Compactness of the -Neumann Operator on the Intersection of Two Domains. 9-15. Straube, E. J. (2006). Aspects of the L2-Sobolev theory of the -Neumann problem. 1453-1478. institutional repository document Liu, B., & Straube, E. J. (2022). Diederich--Fornae ss index and global regularity in the $overline{partial}$--Neumann problem: domains with comparable Levi eigenvalues Celik, M., Sahutoglu, S., & Straube, E. J. (2020). A Sufficient condition for compactness of Hankel operators Celik, M., Sahutoglu, S., & Straube, E. J. (2020). Compactness of Hankel operators with continuous symbols on convex domains Celik, M., Sahutoglu, S., & Straube, E. J. (2019). Convex domains, Hankel operators, and maximal estimates Biard, S., & Straube, E. J. (2017). Estimates for the complex Green operator: symmetry, percolation, and interpolation Biard, S., & Straube, E. J. (2016). $L^{2}$-Sobolev theory for the complex Green operator Ayyr, M., & Straube, E. J. (2014). Compactness of the $overline{partial}$-Neumann operator on the intersection of two domains Straube, E. J., & Zeytuncu, Y. E. (2013). Sobolev estimates for the complex Green operator on CR submanifolds of hypersurface type Straube, E. J., & Zampieri, G. (2011). On extending $L^{2}$ holomorphic functions from complex hyperplanes Herbig, A., McNeal, J. D., & Straube, E. J. (2011). Duality of holomorphic functions spaces und smoothing properties of the Bergman projection Straube, E. J. (2010). The complex Green operator on CR-submanifolds of $mathbb{C}^{n}$ of hypersurface type: compactness Munasinghe, S., & Straube, E. J. (2010). Geometric sufficient conditions for compactness of the complex Green operator elik, M., & Straube, E. J. (2008). Observations regarding compactness in the $overline{partial}$-Neumann problem Raich, A. S., & Straube, E. J. (2007). Compactness of the Complex Green Operator Munasinghe, S., & Straube, E. J. (2006). Complex tangential flows and compactness of the $\bar{partial}$- Neumann operator Straube, E. J. (2006). Aspects of the $L^{2}$-Sobolev theory of the $\bar{partial}$-Neumann problem Straube, E. J. (2005). A sufficient condition for global regularity of the d-bar-Neumann operator Sahutoglu, S., & Straube, E. J. (2004). Analytic discs, plurisubharmonic hulls, and non-compactness of the d-bar-Neumann operator Straube, E. J. (2003). Geometric conditions which imply compactness of the $\bar{partial}$-Neumann operator Fu, S., & Straube, E. J. (2002). Semi-classical analysis of Schrodinger operators and compactness in the d-bar-Neumann problem Straube, E. J., & Sucheston, M. K. (2001). Plurisubharmonic defining functions, good vector fields, and exactness of a certain one form Straube, E. J. (2000). Good Stein Neighborhood Bases and Regularity of the d-bar Neumann Problem Straube, E. J., & Sucheston, M. K. (2000). Levi foliations in pseudoconvex boundaries and vector fields that commute approximately with d-bar Fu, S., & Straube, E. J. (1999). Compactness in the d-bar-Neumann problem Fu, S., & Straube, E. J. (1997). Compactness of the d-bar-Neumann problem on convex domains Straube, E. J. (1997). Plurisubharmonic functions and subellipticity of the dbar-Neumann problem on nonsmooth domains Boas, H. P., Fu, S., & Straube, E. J. (1997). The Bergman kernel function: explicit formulas and zeroes Boas, H. P., & Straube, E. J. (1996). Global regularity of the dbar-Neumann problem: a survey of the L^2-Sobolev theory
editor of book Ebenfelt, P., Hungerbhler, N., Kohn, J. J., Mok, N., & Straube, E. J. (2010). Complex Analysis Straube, E. J. (Eds.), Birkhuser.
principal investigator on Workshop on Analysis and Geometry in Several Complex Variables awarded by National Science Foundation - (Arlington, Virginia, United States) 2014 - 2015
teaching activities MATH171 Calculus I Instructor MATH200 Horizons Of Mathematics Instructor MATH304 Linear Algebra Instructor MATH309 Linear Alg For Diff Eq Instructor MATH323 Hnr-linear Algebra Instructor MATH407 Complex Variables Instructor MATH611 Intro Ord & Part Diff Eq Instructor MATH612 Part Diff Eq Instructor MATH617 Complex Variables I Instructor MATH618 Complex Variables Ii Instructor MATH650 Several Complex Variable Instructor MATH685 Directed Studies Instructor MATH691 Research Instructor
chaired theses and dissertations Ayyuru, Mustafa (2014-07). Compactness of the ? -Neumann Operator on the Intersection Domains in C^(N). Celik, Mehmet (2010-01). CONTRIBUTIONS TO THE COMPACTNESS THEORY OF THE DEL-BAR NEUMANN OPERATOR. Munasinghe, Samangi (2009-06). Geometric sufficient conditions for compactness of the ?-Neumann operator. Sahutoglu, Sonmez (2006-08). Compactness of the dbar-Neumann problem and Stein neighborhood bases. Zhang, Yue (2014-07). Applications of Potential Theory to the Analysis of Property (P_(q)).
education and training Ph.D. in Mathematics, Swiss Federal Institute of Technology in Zurich - (Zurich, Switzerland) 1983
awards and honors Fellow, conferred by American Mathematical Society - (Providence, Rhode Island, United States), 2013 University Professorships for Undergraduate Teaching Excellence, conferred by Texas A&M University - (College Station, Texas, United States), 2006 Outstanding Teaching Award, conferred by Texas A&M University - (College Station, Texas, United States), 1998 Association of Former Students University-Level Distinguished Achievement Award, The, conferred by Texas A&M University - (College Station, Texas, United States), 1998 Outstanding Service Award, conferred by Texas A&M University - (College Station, Texas, United States), 1997 Stefan Bergman Prize, conferred by American Mathematical Society - (Providence, Rhode Island, United States), 1995