[N,N??-bis-(mercaptoethyl)-1,5-diazacyclooctanato]NiII, Ni-1, is known to undergo metallation reactions with numerous metals. [N,N??-bis-(mercaptoethyl)-1,5-diazacycloheptanato]NiII, (bme-dach)Ni or Ni-1??, differs from Ni-1 by one less carbon in its diazacycle backbone ring producing subtle differences in N2S2Ni geometry. Metallation of Ni-1?? with PdCl2, Pd(NO3)2, and NiBr2 produced three structural forms: Ni2Pd basket, Ni4Pd2 C4-paddlewheel, and Ni3 slant chair. In attempts to provide a rationale for the heterogeneity in the active site of Acetyl coA Synthase, metal ion capture studies of Ni-1 in methanol found a qualitative ranking of metal ion preference: Zn2+ < Ni2+ < Cu+. Formation constants for metal ion capture of Ni-1?? in water were determined for Pb2+, Ni2+, Zn2+, Cu+, and Ag+. A quantitative estimate places copper some 15 orders of magnitude above nickel or zinc in binding affinity. Sulfur dioxide uptake by Ni-1?? is characterized by significant color change, improved adduct solubility, and reversible binding of two equivalents of SO2. These combined properties establish Ni-1?? as a suitable model for gas uptake at nickel thiolate sites and as a possibly useful chemical sensor for this poisonous gas. Comparisons of molecular structures, ν(SO) stretching frequencies, and thermal gravimetric analyses are made to reported adducts including the diazacyclooctane derivative, Ni-1·2SO2. Visual SO2 detection limits of Ni-1 and Ni-1?? are established at 25 ppm and 100 ppm, respectively. Structural studies of products resulting from reaction at the nucleophilic S-sites of (bme-dach)Ni and [(bme-dach)Zn]2 included acetyl chloride and sodium iodoacetate as electrophiles are shown. The acetyl group is a natural electrophile important to the citric acid cycle. Acetylation of (bme-dach)Ni produces a five coordinate, paramagnetic species. Iodoacetate is a cysteine modification agent known to inhibit enzymatic activity. The reaction of (bme-dach)Ni and sodium iodoacetate yields a blue, six coordinate nickel complex in a N2S2O2 donor environment. The bismercaptodiazacycloheptane ligand binds lead(II) forming an unprecedented structural form of N2S2M dimers, in which Pb2+ is largely bound to sulfur in a highly distorted trigonal geometry. Its unusual structure is described in comparison to other derivatives of the bme-daco ligand. The synthesis and structural characterization of square pyramidal (bme-dach)GaCl are also given and compared to the analogous (bme-daco)GaCl.