Lee, Donghyun (2015-12). Millimeter-Wave Concurrent Dual-Band BiCMOS RFICs for Radar and Communication RF Front-End. Doctoral Dissertation. Thesis uri icon

abstract

  • The recent advancement in silicon-based technologies has offered the opportunity for the development of highly-integrated circuits and systems in the millimeter-wave frequency regime. In particular, the demand for high performance multi-band multi-mode radar and communication systems built on silicon-based technologies has been increased dramatically for both military and commercial applications. This dissertation presents the design and implementation of advanced millimeter-wave front-end circuits in SiGe BiCMOS process including a transmit/receive switch module with integrated calibration function, low noise amplifier, and power amplifier for millimeter-wave concurrent dual-band dual-polarization radars and communication systems. The proposed circuits designed for the concurrent dual-band dual-polarization radars and communication systems were fabricated using 0.18-um BiCMOS process resulting in novel circuit architectures for concurrent multi-band operation. The developed concurrent dual-band circuits fabricated on 0.18-um BiCMOS process include the T/R/Calibration switch module for digital beam forming array system at 24.5/35 GHz, concurrent dual-band low noise amplifiers at 44/60 GHz, and concurrent dual-band power amplifier at 44/60 GHz. With having all the design frequencies closely spaced to each other showing the frequency ratio below 1.43, the designed circuits provided the integrated dual-band filtering function with Q-enhanced frequency responses. Inspired by the composite right/left- handed metamaterial transmission line approaches, the integrated Q-enhanced filtering sub-circuits provided unprecedented dual-band filtering capability. The new concurrent dual-band dual-mode circuits and system architecture can provide enhanced radar and communication system performance with extended coverage, better image synthesis and target locating by the enhanced diversity. The circuit level hardware research conducted in this dissertation is expected to contribute to enhance the performance of multi-band multi-mode imaging, sensing, and communication array systems.

publication date

  • December 2015