Tanaka, Shusei (2014-12). Effective Reservoir Management Using Streamline-Based Reservoir Simulation, History Matching and Rate Allocation Optimization. Doctoral Dissertation. Thesis uri icon

abstract

  • The use of the streamline-based method for reservoir management is receiving increased interest in recent years because of its computational advantages and intuitive appeal for reservoir simulation, history matching and rate allocation optimization. Streamline-based method uses snapshots of flow path of convective flow. Previous studies proved its applicability for convection dominated process such as waterflooding and tracer transport. However, for a case with gas injection with strong capillarity and gravity effects, the streamline-based method tends to lose its advantages for reservoir simulation and may result in loss of accuracy and applicability for history-matching and optimization problems.

    In this study, we first present the development of a 3D 3-phase black oil and compositional streamline simulator. Then, we introduce a novel approach to incorporate capillary and gravity effects via orthogonal projection method. The novel aspect of our approach is the ability to incorporate transverse effects into streamline simulation without adversely affecting its computational efficiency. We demonstrate our proposed method for various cases, including CO2 injection scenario. The streamline model is shown to be particularly effective to examine and visualize the interactions between heterogeneity which resulting impact on the vertical and areal sweep efficiencies.

    Next, we apply the streamline simulator to history matching and rate optimization problems. In the conventional approach of streamline-based history matching, the objective is to match flow rate history, assuming that reservoir energy was matched already, such as pressure distribution. The proposed approach incorporates pressure information as well as production flow rates, aiming that reservoir energy are also reproduced during production rate matching.

    Finally, we develop an NPV-based optimization method using streamline-based rate reallocation algorithm. The NPV is calculated along streamline and used to generate diagnostic plots of the effectiveness of wells. The rate is updated to maximize the field NPV. The proposed approach avoids the use of complex optimization tools. Instead, we emphasize the visual and the intuitive appeal of streamline methods and utilize flow diagnostic plots for optimal rate allocation.

    We concluded that our proposed approach of streamline-based simulation, inversion and optimization algorithm improves computational efficiency and accuracy of the solution, which leads to a highly effective reservoir management tool that satisfies industry demands.

publication date

  • December 2014