Park, Hongsuk (2011-08). Dynamic Control for Batch Process Systems Using Stochastic Utility Evaluation. Doctoral Dissertation. Thesis uri icon

abstract

  • Most research studies in the batch process control problem are focused on optimizing system performance. The methods address the problem by minimizing single criterion such as cycle time and tardiness, or bi-criteria such as cycle time and tardiness, and earliness and tardiness. This research demonstrates the use of Stochastic Utility Evaluation (SUE) function approach to optimize system performance using multiple criteria. In long production cycles, the earliness and tardiness weight (utility) of products vary depending on the time. As the time approaches the due-date, it affects contractual penalties, loss of customer goodwill and the storage period for the completed products. It is necessary to reflect the weight of products for earliness and tardiness at decision epochs to decide on the optimal strategy. This research explores how stochastic utility function using stochastic information can be derived and used to strategically improve existing approaches for the batch process control problem. This research first explores how SUE function can be applied to existing model for bi-objective problem such as cycle time and tardiness. Benchmark strategies using SUE function (NACH-SUE, MBS-SUE, No idle and full batch) are compared to each other. The experimental results show that NACH-SUE effectively improves mean cycle time and tardiness performance respectively than other benchmark strategies. Next, SUE function for earliness and tardiness is used in an existing model to develop a tri-objective problem. Typically, this problem is very complex to solve due to its trade-off relationship. However SUE function makes it relatively easy to solve the tri-objective problem since SUE function can be incorporated in an existing model. It is observed that SUE function can be effectively used for solving a tri-objective problem. Performance improvement for averaged value of cycle time, earliness and tardiness is observed under a comprehensive set of experimental conditions.
  • Most research studies in the batch process control problem are focused on optimizing system performance. The methods address the problem by minimizing single criterion such as cycle time and tardiness, or bi-criteria such as cycle time and tardiness, and earliness and tardiness. This research demonstrates the use of Stochastic Utility Evaluation (SUE) function approach to optimize system performance using multiple criteria.

    In long production cycles, the earliness and tardiness weight (utility) of products vary depending on the time. As the time approaches the due-date, it affects contractual penalties, loss of customer goodwill and the storage period for the completed products. It is necessary to reflect the weight of products for earliness and tardiness at decision epochs to decide on the optimal strategy. This research explores how stochastic utility function using stochastic information can be derived and used to strategically improve existing approaches for the batch process control problem.

    This research first explores how SUE function can be applied to existing model for bi-objective problem such as cycle time and tardiness. Benchmark strategies using SUE function (NACH-SUE, MBS-SUE, No idle and full batch) are compared to each other. The experimental results show that NACH-SUE effectively improves mean cycle time and tardiness performance respectively than other benchmark strategies.

    Next, SUE function for earliness and tardiness is used in an existing model to develop a tri-objective problem. Typically, this problem is very complex to solve due to its trade-off relationship. However SUE function makes it relatively easy to solve the tri-objective problem since SUE function can be incorporated in an existing model. It is observed that SUE function can be effectively used for solving a tri-objective problem. Performance improvement for averaged value of cycle time, earliness and tardiness is observed under a comprehensive set of experimental conditions.

publication date

  • August 2011