The persistent evolution of malware intrusion brings great challenges to current anti-malware industry. First, the traditional signature-based detection and prevention schemes produce outgrown signature databases for each end-host user and user has to install the AV tool and tolerate consuming huge amount of resources for pairwise matching. At the other side of malware analysis, the emerging malware can detect its running environment and determine whether it should infect the host or not. Hence, traditional dynamic malware analysis can no longer find the desired malicious logic if the targeted environment cannot be extracted in advance. Both these two problems uncover that current malware defense schemes are too passive and reactive to fulfill the task. The goal of this research is to develop new analysis and protection schemes for the emerging malware threats. Firstly, this dissertation performs a detailed study on recent targeted malware attacks. Based on the study, we develop a new technique to perform effectively and efficiently targeted malware analysis. Second, this dissertation studies a new trend of massive malware intrusion and proposes a new protection scheme to proactively defend malware attack. Lastly, our focus is new P2P malware. We propose a new scheme, which is named as informed active probing, for large-scale P2P malware analysis and detection. In further, our internet-wide evaluation shows our active probing scheme can successfully detect malicious P2P malware and its corresponding malicious servers.
The persistent evolution of malware intrusion brings great challenges to current anti-malware industry. First, the traditional signature-based detection and prevention schemes produce outgrown signature databases for each end-host user and user has to install the AV tool and tolerate consuming huge amount of resources for pairwise matching. At the other side of malware analysis, the emerging malware can detect its running environment and determine whether it should infect the host or not. Hence, traditional dynamic malware analysis can no longer find the desired malicious logic if the targeted environment cannot be extracted in advance. Both these two problems uncover that current malware defense schemes are too passive and reactive to fulfill the task.
The goal of this research is to develop new analysis and protection schemes for the emerging malware threats. Firstly, this dissertation performs a detailed study on recent targeted malware attacks. Based on the study, we develop a new technique to perform effectively and efficiently targeted malware analysis. Second, this dissertation studies a new trend of massive malware intrusion and proposes a new protection scheme to proactively defend malware attack. Lastly, our focus is new P2P malware. We propose a new scheme, which is named as informed active probing, for large-scale P2P malware analysis and detection. In further, our internet-wide evaluation shows our active probing scheme can successfully detect malicious P2P malware and its corresponding malicious servers.