The Independent Mesh Method (IMM) was used to analyze stress distributions within a unit cell model for a symmetrically stacked plain weave textile composite. Results from these analyses were compared to those of conventional finite element analyses, which are well established. Preliminary comparisons showed extreme disagreement between the two methodologies. Further investigation into the source of these differences led to significant corrections to the IMM implementation. After these updates, much better agreement between the two methodologies was observed; however, noticeable differences were still present. The remaining differences were characterized using a simple two-inclusion model upon which the impacts of the penalty displacement method, which the IMM relies upon heavily, were more apparent. It was shown that the implementation of the penalty displacement method for maintaining approximate displacement continuity between two surfaces induces significant error in stress distributions close to the interface. While these effects are less noticeable in the plain weave model, they are still present and diminish the fidelity of stress information in important tow-matrix interface regions, prohibiting the reliable prediction of damage initiation and growth.