McDougall, Jeffrey Michael (2003-08). Low complexity channel models for approximating flat Rayleigh fading in network simulations. Doctoral Dissertation. Thesis uri icon


  • The intricate dependency of networking protocols upon the performance of the wireless channel motivates the investigation of network channel approximations for fading channels. Wireless networking protocols are increasingly being designed and evaluated with the assistance of networking simulators. While evaluating networking protocols such as medium access control, routing, and reliable transport, the network channel model, and its associated capacity, will drastically impact the achievable network throughput. Researcher relying upon simulation results must therefore use extreme caution to ensure the use of similar channel models when performing protocol comparisons. Some channel approximations have been created to mimic the behavior of a fading environment, however there exists little to no justification for these channel approximations.

    This dissertation addresses the need for a computationally efficient fading channel approximation for use in network simulations. A rigorous flat fading channel model was developed for use in accuracy measurements of channel approximations. The popular two-state Markov model channel approximation is analyzed and shown to perform poorly for low to moderate signal-to-noise ratios (SNR). Three novel channel approximations are derived, with multiple methods of parameter estimation. Each model is analyzed for both statistical performance and network performance. The final model is shown to achieve very accurate network throughput performance by achieving a very close matching of the frame run distributions.

    This work provides a rigorous evaluation of the popular two-state Markov model, and three novel low complexity channel models in both statistical accuracy and network throughput performance. The novel models are formed through attempts to match key statistical parameters of frame error run and good frame run statistics. It is shown that only matching key parameters is insufficient to achieve an acceptable channel approximation and that it is necessary to approximate the distribution of frame error duration and good frame run duration. The final novel channel approximation, the three-state run-length model, is shown to achieve a good approximation of the desired distributions when some key statistical parameters are matched.

publication date

  • August 2003