Negahdari, Amir (2017-07). Modeling and Experimental Verification of Adaptive 100% Stator Ground Fault Protection Schemes for Synchronous Generators. Master's Thesis. Thesis uri icon

abstract

  • Salient pole synchronous generators as the main component of an electricity generation station should be carefully maintained and their operation has to be monitored such that any damage on them is avoided. Otherwise, the generating station might experience frequent shut downs which results in electricity generation interruptions and high costs associated with repairing and compensation of lack of energy. In this sense, many protective schemes focusing on a variety of synchronous generator faults have already been proposed and are still modified and developed to further enhance the quality of protection. In this thesis, synchronous generator stator windings to ground fault is studied as one of the most common and crucial faults in these machines. Numerous methods of stator winding to ground fault protection schemes are also reported in the literature. Third harmonic differential voltage and sub-harmonic schemes are studied in this research. A novel adaptive scheme for both methods is modelled and implemented in a comprehensive lab scale set-up where a real generation unit is scaled down including all different components and apparatus. The simulation model is also established based on simultaneous finite element analysis (FEA) and coupled magnetic circuit to assist with system configuration design and parameter selections. The adaptive scheme is proved to be capable of detecting stator windings to ground faults based on actual experimental data. Finally, the proposed adaptive scheme is compared against other available non-adaptive protection schemes currently used in industrial relays. Several important performance evaluation criteria in protection schemes such as sensitivity and security of operation referred to as reliability are considered. It is shown that the adaptive scheme offers higher reliability than other schemes which emphasizes its credibility and applicability.

publication date

  • August 2017