Yu, Jiamei (2013-05). Computational Evaluation of Metal-Organic Frameworks for CO2 Capture. Doctoral Dissertation. Thesis uri icon

abstract

  • Metal-organic frameworks (MOFs), a new class of porous solids comprised of metal-containing nodes linked by organic ligands, have become promising materials for gas separations. In particular, their flexible chemistry makes them attractive for CO2 capture from flue gas streams in post-combustion plants. Although numerous efforts have been exerted on the investigation of MOFs for CO2 capture, the exploration of the effects from coexisting components present in very dilute proportions in flue gases is limited because of the experimental difficulty to determine the coadsorption of CO2 with trace components. In this regard, molecular simulations show superiority. In this study, molecular simulations are used to estimate the influence of impurities: water, O2, and SO2 on post-combustion CO2 capture in MOFs. Firstly, two MOFs with coordinatively unsaturated metal sites (CUMs), HKUST-1 and Mg-MOF-74 are explored. Increase of CO2 adsorption is observed for hydrated HKUST-1; on the contrary, the opposite water adsorption behavior is observed in hydrated Mg-MOF-74, leading to decrease of CO2 adsorption. Further, water effects on CO2 capture in M-HKUST1 (M = Mg, Zn, Co, Ni) are evaluated to test whether comparing the binding energy could be a general method to evaluate water effects in MOFs with CUMs. It is found that the method works well for Zn-, Co-, and Ni-HKUST1 but partially for Mg-HKUST1. In addition, the effects of O2 and SO2 on CO2 capture in MOFs are also investigated for the first time, showing that the effects of O2 may be negligible but SO2 has negative effects in the CO2 capture process in HKUST-1 systems. Secondly, the influences of water on CO2 capture in three UiO-66 MOFs with functional groups, -NH2, -OH and -Br are explored, respectively. For UiO-66-NH2 and -OH, the presence of water lowers CO2 adsorption significantly; in contrast, water shows much smaller effects in UiO-66-Br. Moreover, the presence of SO2 decreases water adsorption but enhances CO2 uptakes slightly in both UiO-66-NH2 and -Br. Finally, the effects of impurities on CO2 capture in a MOF with suitable pore size (PCN-200) are analyzed. The adsorption of both CO2 and N2 decrease substantially even with 1% water present in the mixture. In addition, the presence of low SO2 does not show obvious effect in PCN-200. However, a lower CO2 adsorption is observed for a mixture with a high SO2 content. In collaboration with experimental groups, the performances of three new MOFs in CO2 capture are evaluated using molecular simulations. The computational results demonstrate the feasibility of precisely designing single-molecule traps (SMT) for CO2 capture. Also, a multi-functional MOF with micro-porosity, open Cu2+ sites and amine groups has also proved computationally the selective adsorption of CO2 over CH4 and N2. Last, we demonstrate that charge separation is an effective strategy for improving CO2 capture in MOFs.
  • Metal-organic frameworks (MOFs), a new class of porous solids comprised of metal-containing nodes linked by organic ligands, have become promising materials for gas separations. In particular, their flexible chemistry makes them attractive for CO2 capture from flue gas streams in post-combustion plants. Although numerous efforts have been exerted on the investigation of MOFs for CO2 capture, the exploration of the effects from coexisting components present in very dilute proportions in flue gases is limited because of the experimental difficulty to determine the coadsorption of CO2 with trace components. In this regard, molecular simulations show superiority.

    In this study, molecular simulations are used to estimate the influence of impurities: water, O2, and SO2 on post-combustion CO2 capture in MOFs. Firstly, two MOFs with coordinatively unsaturated metal sites (CUMs), HKUST-1 and Mg-MOF-74 are explored. Increase of CO2 adsorption is observed for hydrated HKUST-1; on the contrary, the opposite water adsorption behavior is observed in hydrated Mg-MOF-74, leading to decrease of CO2 adsorption. Further, water effects on CO2 capture in M-HKUST1 (M = Mg, Zn, Co, Ni) are evaluated to test whether comparing the binding energy could be a general method to evaluate water effects in MOFs with CUMs. It is found that the method works well for Zn-, Co-, and Ni-HKUST1 but partially for Mg-HKUST1. In addition, the effects of O2 and SO2 on CO2 capture in MOFs are also investigated for the first time, showing that the effects of O2 may be negligible but SO2 has negative effects in the CO2 capture process in HKUST-1 systems.

    Secondly, the influences of water on CO2 capture in three UiO-66 MOFs with functional groups, -NH2, -OH and -Br are explored, respectively. For UiO-66-NH2 and -OH, the presence of water lowers CO2 adsorption significantly; in contrast, water shows much smaller effects in UiO-66-Br. Moreover, the presence of SO2 decreases water adsorption but enhances CO2 uptakes slightly in both UiO-66-NH2 and -Br.

    Finally, the effects of impurities on CO2 capture in a MOF with suitable pore size (PCN-200) are analyzed. The adsorption of both CO2 and N2 decrease substantially even with 1% water present in the mixture. In addition, the presence of low SO2 does not show obvious effect in PCN-200. However, a lower CO2 adsorption is observed for a mixture with a high SO2 content.

    In collaboration with experimental groups, the performances of three new MOFs in CO2 capture are evaluated using molecular simulations. The computational results demonstrate the feasibility of precisely designing single-molecule traps (SMT) for CO2 capture. Also, a multi-functional MOF with micro-porosity, open Cu2+ sites and amine groups has also proved computationally the selective adsorption of CO2 over CH4 and N2. Last, we demonstrate that charge separation is an effective strategy for improving CO2 capture in MOFs.

publication date

  • May 2013