Kulkarni, Ajay V. (2004-12). Effect of ausforming via severe plastic deformation on shape memory behavior of NiTi. Master's Thesis. Thesis uri icon


  • In this study, Thermomechanical properties of Ti-50.8 and 50.7 at% Ni alloy severely deformed using Equal Channel Angular Extrusion (ECAE) are investigated. The aim of this study is to reveal the effects of severe plastic deformation on shape memory, pseudelasticity, interplay between plastic deformation via dislocation slip and twinning, and forward and reverse martensitic transformation. The samples are processed at room temperature, i.e. slightly above the austenite finish temperature, and at 450 ??C, i.e. well-above the austenite finish temperature. Transformation temperatures, microstructural evolution, and thermomechanical properties of ECAE processed samples are studied before and after low temperature annealing heat treatment and compared with conventional cold drawn and precipitation hardened material. The unique findings are: 1) the observation of a mixture of heavily deformed B2 (austenite) and B19?? (martensite) phases in the samples processed at room temperature although martensite stabilization was expected, 2) the observation of highly organized, twin-related nanograins in B2 phase of the samples deformed at room temperature which was attributed to B2 to B19' via SIM, and B19' to B2 via SPD (SIM: Stress Induced Martensitic transformation, SPD: Severe Plastic Deformation) transformation sequence, 3) simultaneous observation of B2 austenite and strain induced B19?? martensite in the samples deformed at 450 ??C, and 4) perfect pseudoelasticity, small pseudoelastic stress hysteresis and excellent cyclic response with no irrecoverable strain up to 1000 cycles for ECAE at 450 ??C processed sample. Strain induced martensite in NiTi alloys was reported for the first time. The formation of well-organized twin-related nanograins via severe plastic deformation opens a new opportunity for twinning induced grain boundary engineering in NiTi alloys which significantly improves the matrix strength and the cyclic response against degradation of shape memory and pseudoelasticity.

publication date

  • December 2004