Widyanto, Erie (2015-12). Design of Multi-Stage Compressor Using Streamline Curvature Method. Master's Thesis. Thesis uri icon

abstract

  • Streamline curvature method is the most acceptable method used in compressor design. This method is superior to the simple radial equilibrium method because it accounts for losses and secondary flow in the computation. A twenty-five stage subsonic axial compressor, with a total pressure ratio of 40.39, is designed using the streamline curvature method. This multi-stage compressor becomes part of an Ultra High Efficiency Gas Turbine (UHEGT). A number of design parameters are used to execute the mean line compressor modeling computation. The result of this computation becomes the input data in the streamline curvature method. The 3D blade profiler uses the streamline data (camberlines) to generate the actual blade profile. A solid modeling package is used to create 3D blades, a multi-stage compressor, and 3D final design of an Ultra High Efficiency Gas Turbine (UHEGT). The compressor performance map on designed rpm is generated. Finally, the blade pressure distribution is generated using CFD package software. The streamline curvature method is successfully utilized for LP, IP, and HP compressor stage design. The computed total power needed for this multi-stage compressor is 91.2 MW. The inlet and outlet Mach numbers are 0.43 and 0.22, respectively. Based on the design parameters, the streamline curvature method gave lower flow deflection angles for LP compressor stages compared to IP and HP compressor stages.
  • Streamline curvature method is the most acceptable method used in compressor design. This method is superior to the simple radial equilibrium method because it accounts for losses and secondary flow in the computation.

    A twenty-five stage subsonic axial compressor, with a total pressure ratio of 40.39, is designed using the streamline curvature method. This multi-stage compressor becomes part of an Ultra High Efficiency Gas Turbine (UHEGT). A number of design parameters are used to execute the mean line compressor modeling computation. The result of this computation becomes the input data in the streamline curvature method. The 3D blade profiler uses the streamline data (camberlines) to generate the actual blade profile. A solid modeling package is used to create 3D blades, a multi-stage compressor, and 3D final design of an Ultra High Efficiency Gas Turbine (UHEGT). The compressor performance map on designed rpm is generated. Finally, the blade pressure distribution is generated using CFD package software.

    The streamline curvature method is successfully utilized for LP, IP, and HP compressor stage design. The computed total power needed for this multi-stage compressor is 91.2 MW. The inlet and outlet Mach numbers are 0.43 and 0.22, respectively. Based on the design parameters, the streamline curvature method gave lower flow deflection angles for LP compressor stages compared to IP and HP compressor stages.

publication date

  • December 2015