Joshi, Nikhil P. (2008-08). ANALYSES OF DEFORMATION IN VISCOELASTIC SANDWICH COMPOSITES SUBJECT TO MOISTURE DIFFUSION. Master's Thesis. Thesis uri icon

abstract

  • Sandwich composites with polymer foam core are currently used in load-bearing components in buildings and naval structures due to their high strength to weight and stiffness to weight ratios, excellent thermal insulation, and ease of manufacturing. During their service time, sandwich composites are exposed to various external mechanical and hygro-thermal stimuli. It is known that the constituent properties of the sandwich composites are greatly influenced by the temperature and moisture fields. For example extreme temperature changes and humid environmental conditions can significantly degrade the stiffness and strength of the polymer foam core. This study analyzes the effect of moisture diffusion on the deformation of viscoelastic sandwich composites, which are composed of orthotropic fiber-reinforced laminated skins and viscoelastic polymeric foam core. It is assumed that the elastic and time-dependent (transient) moduli at any particular location in the foam core depend on the moisture concentration at that location. Sequentially coupled analyses of moisture diffusion and deformation are performed to predict overall performance of the studied viscoelastic sandwich systems. A time and moisture dependent constitutive model is used for the polymer foam core. A time-integration algorithm is developed to link this constitutive model to finite element (FE) analyses framework. The overall time-dependent responses of the sandwich composites subject to moisture diffusion are analyzed using 2D plane strain and 3D continuum elements. A 23% increase in the transverse deformation of the viscoelastic sandwich beam is observed due to the moisture degradation. Experimental data and analytical models available in the literature are used to verify the results obtained from the FE code. Parametric studies on the effects of different diffusivity ratios of skin and core materials on stress, strain and displacement fields have been analyzed. At the initial times the effect of moisture on the field variables is found to be most pronounced in the case with the highest diffusivity ratio. Contributions of moisture dependent elastic and the time-dependent moduli to the overall stress, strain and displacement field have been studied. The structural analysis of the sandwich composite under combined moisture diffusion and mechanical loading for two kinds of problems using FE method is performed to complete the study.

publication date

  • August 2008