Aziz, Ahsan (2013-08). Robust Beamforming for Two-Way Relay Systems. Doctoral Dissertation. Thesis uri icon

abstract

  • In wireless communication systems, relays are widely used to extend coverage. Over the past years, relays have evolved from simple repeaters to more sophisticated units that perform signal processing to improve signal to interference plus noise ratio (SINR) or throughput (or both) at the destination receiver. There are various types of relays such as amplify and forward (AF), decode and forward (DF), and compress and forward (CF) (or estimate and forward (EF)) relays. In addition, recently there has been a growing interest in two-way relays (TWR). By utilizing the concept of analog network coding (ANC), TWRs can improve the throughput of a wireless sys- tem by reducing the number of time slots needed to complete a bi-directional message exchange between two destination nodes. It's well known that the performance of a TWR system greatly depends on its ability to apply signal processing techniques to effectively mitigate the self-interference and noise accumulation, thereby improving the SINR. We study a TWR system that is equipped with multiple antennas at the relay node and a single antenna at the two destination nodes. Different from traditional work on TWR, we focus on the case with imperfect knowledge of channel state information (CSI). For such a TWR, we formulate a robust optimization problem that takes into ac- count norm-bounded estimation errors in CSI and designs an optimal beamforming matrix. Realizing the fact that this problem is extremely hard to solve globally, we derive two different methods to obtain either optimal or efficient suboptimal beam- forming matrix solutions. The first method involves solving the robust optimization problem using the S-procedure and semidefinite programming (SDP) with rank-one relaxation. This method provides an optimal solution when the rank-one relaxation condition for the SDP is satisfied. In cases where the rank-one condition cannot be satisfied, it's necessary to resort to sub-optimal techniques. The second approach presented here reformulates the robust non-convex quadratically constrained quadratic programming (QCQP) into a robust linear programming (LP) problem by using first-order perturbation of the optimal non-robust beamforming solution (which assumes no channel estimation error). Finally, we view the TWR robust beamforming problem from a practical standpoint and develop a set of iterative algorithms based on Newton's method or the steepest descent method that are practical for hardware implementation.
  • In wireless communication systems, relays are widely used to extend coverage. Over the past years, relays have evolved from simple repeaters to more sophisticated units that perform signal processing to improve signal to interference plus noise ratio (SINR) or throughput (or both) at the destination receiver. There are various types of relays such as amplify and forward (AF), decode and forward (DF), and compress and forward (CF) (or estimate and forward (EF)) relays. In addition, recently there has been a growing interest in two-way relays (TWR). By utilizing the concept of analog network coding (ANC), TWRs can improve the throughput of a wireless sys- tem by reducing the number of time slots needed to complete a bi-directional message exchange between two destination nodes. It's well known that the performance of a TWR system greatly depends on its ability to apply signal processing techniques to effectively mitigate the self-interference and noise accumulation, thereby improving the SINR. We study a TWR system that is equipped with multiple antennas at the relay node and a single antenna at the two destination nodes. Different from traditional work on TWR, we focus on the case with imperfect knowledge of channel state information (CSI).

    For such a TWR, we formulate a robust optimization problem that takes into ac- count norm-bounded estimation errors in CSI and designs an optimal beamforming matrix. Realizing the fact that this problem is extremely hard to solve globally, we derive two different methods to obtain either optimal or efficient suboptimal beam- forming matrix solutions. The first method involves solving the robust optimization problem using the S-procedure and semidefinite programming (SDP) with rank-one relaxation. This method provides an optimal solution when the rank-one relaxation condition for the SDP is satisfied. In cases where the rank-one condition cannot be satisfied, it's necessary to resort to sub-optimal techniques. The second approach presented here reformulates the robust non-convex quadratically constrained quadratic programming (QCQP) into a robust linear programming (LP) problem by using first-order perturbation of the optimal non-robust beamforming solution (which assumes no channel estimation error). Finally, we view the TWR robust beamforming problem from a practical standpoint and develop a set of iterative algorithms based on Newton's method or the steepest descent method that are practical for hardware implementation.

publication date

  • August 2013