Imam, Tahmina 1983- (2012-11). Comparison of Biological and Thermal (Pyrolysis) Pathways for Conversion of Lignocellulose to Biofuels. Doctoral Dissertation. Thesis uri icon

abstract

  • Because of the limited supply of imported crude oil and environmental degradation, renewable energy is becoming commercially feasible and environmentally desirable. In this research, biological and thermal (pyrolysis) conversion pathways for biofuel production from lignocellulosic feedstocks were compared. For biological conversions of sorghum, ethanol yield was improved using M81-E variety (0.072 g/g juice) over Umbrella (0.065 g/g juice) for first-generation biomass (sorghum juice), and 0.042 g/g sorghum was obtained from the cellulosic portion of second-generation biomass. When ultrasonication was combined with hot water pretreatment, yields increased by 15% and 7% for cellulose to glucose, and hemicellulose to pentose, respectively. Ethanol yield was 10% higher when this pretreatment was combined with Accellerase 1500+XC for saccharification. Biological conversion yielded 1,600?2,300 L ethanol/ha for first-generation biomass, and 4,300?4,500 L ethanol/ha from lignocellulosic biomass. For thermal (pyrolysis) conversion of lignocellulosic switchgrass at 600 degrees C, product yield was 37% bio-oil, 26% syngas, and 25% bio-char. At 400 degrees C, product yield was 22% bio-oil, 8% syngas, and 56% bio-char. Bio-oil from pyrolysis was highly oxygenated (37 wt%). It required chemical transformation to increase its volatility and thermal stability, and to reduce its viscosity by removing objectionable oxygen, so the product could be used as transportation fuel (gasoline). As a consequence of upgrading bio-oil by catalytic hydrogenation, bio-oil oxygen decreased from 37?2 wt%, carbon increased from 50?83 wt%, hydrogen increased from 9?15 wt% and heating value increased from 36?46 MJ/kg, resulting in a fuel that was comparable to gasoline. The upgraded product passed the thermal stability test when kept under an oxygen-rich environment. The upgraded product consisted of 14.8% parrafins, 21.7% iso-parrafins, 3% napthene, 42.6% aromatics, 4.7% olefin, 4.7% DMF, 8% alcohol, and 0.6% ketone on a mass basis. Comparing the two pathways, biological conversion had 11 wt% ethanol yield from sorghum, and thermal conversion had 13 wt% gasoline yield from switchgrass. For process efficiency, thermal conversion had 35% energy loss versus 45% energy loss for biological conversions. For the biological pathway, ethanol cost was $2.5/gallon ($4/gallon, gasoline equivalent), whereas for the thermal pathway, switchgrass gasoline cost was $3.7/gallon, both with 15% before tax profit.

publication date

  • November 2012