Gosangi, Rakesh (2013-08). Active Control Strategies for Chemical Sensors and Sensor Arrays. Doctoral Dissertation. Thesis uri icon

abstract

  • Chemical sensors are generally used as one-dimensional devices, where one measures the sensor's response at a fixed setting, e.g., infrared absorption at a specific wavelength, or conductivity of a solid-state sensor at a specific operating temperature. In many cases, additional information can be extracted by modulating some internal property (e.g., temperature, voltage) of the sensor. However, this additional information comes at a cost (e.g., sensing times, power consumption), so offline optimization techniques (such as feature-subset selection) are commonly used to identify a subset of the most informative sensor tunings. An alternative to offline techniques is active sensing, where the sensor tunings are adapted in real-time based on the information obtained from previous measurements. Prior work in domains such as vision, robotics, and target tracking has shown that active sensing can schedule agile sensors to manage their sensing resources more efficiently than passive sensing, and also balance between sensing costs and performance. Inspired from the history of active sensing, in this dissertation, we developed active sensing algorithms that address three different computational problems in chemical sensing. First, we consider the problem of classification with a single tunable chemical sensor. We formulate the classification problem as a partially observable Markov decision process, and solve it with a myopic algorithm. At each step, the algorithm estimates the utility of each sensing configuration as the difference between expected reduction in Bayesian risk and sensing cost, and selects the configuration with maximum utility. We evaluated this approach on simulated Fabry-Perot interferometers (FPI), and experimentally validated on metal-oxide (MOX) sensors. Our results show that the active sensing method obtains better classification performance than passive sensing methods, and also is more robust to additive Gaussian noise in sensor measurements. Second, we consider the problem of estimating concentrations of the constituents in a gas mixture using a tunable sensor. We formulate this multicomponent-analysis problem as that of probabilistic state estimation, where each state represents a different concentration profile. We maintain a belief distribution that assigns a probability to each profile, and update the distribution by incorporating the latest sensor measurements. To select the sensor's next operating configuration, we use a myopic algorithm that chooses the operating configuration expected to best reduce the uncertainty in the future belief distribution. We validated this approach on both simulated and real MOX sensors. The results again demonstrate improved estimation performance and robustness to noise. Lastly, we present an algorithm that extends active sensing to sensor arrays. This algorithm borrows concepts from feature subset selection to enable an array of tunable sensors operate collaboratively for the classification of gas samples. The algorithm constructs an optimized action vector at each sensing step, which contains separate operating configurations for each sensor in the array. When dealing with sensor arrays, one needs to account for the correlation among sensors. To this end, we developed two objective functions: weighted Fisher scores, and dynamic mutual information, which can quantify the discriminatory information and redundancy of a given action vector with respect to the measurements already acquired. Once again, we validated the approach on simulated FPI arrays and experimentally tested it on an array of MOX sensors. The results show improved classification performance and robustness to additive noise.
  • Chemical sensors are generally used as one-dimensional devices, where one measures the sensor's response at a fixed setting, e.g., infrared absorption at a specific wavelength, or conductivity of a solid-state sensor at a specific operating temperature. In many cases, additional information can be extracted by modulating some internal property (e.g., temperature, voltage) of the sensor. However, this additional information comes at a cost (e.g., sensing times, power consumption), so offline optimization techniques (such as feature-subset selection) are commonly used to identify a subset of the most informative sensor tunings. An alternative to offline techniques is active sensing, where the sensor tunings are adapted in real-time based on the information obtained from previous measurements. Prior work in domains such as vision, robotics, and target tracking has shown that active sensing can schedule agile sensors to manage their sensing resources more efficiently than passive sensing, and also balance between sensing costs and performance. Inspired from the history of active sensing, in this dissertation, we developed active sensing algorithms that address three different computational problems in chemical sensing.

    First, we consider the problem of classification with a single tunable chemical sensor. We formulate the classification problem as a partially observable Markov decision process, and solve it with a myopic algorithm. At each step, the algorithm estimates the utility of each sensing configuration as the difference between expected reduction in Bayesian risk and sensing cost, and selects the configuration with maximum utility. We evaluated this approach on simulated Fabry-Perot interferometers (FPI), and experimentally validated on metal-oxide (MOX) sensors. Our results show that the active sensing method obtains better classification performance than passive sensing methods, and also is more robust to additive Gaussian noise in sensor measurements.

    Second, we consider the problem of estimating concentrations of the constituents in a gas mixture using a tunable sensor. We formulate this multicomponent-analysis problem as that of probabilistic state estimation, where each state represents a different concentration profile. We maintain a belief distribution that assigns a probability to each profile, and update the distribution by incorporating the latest sensor measurements. To select the sensor's next operating configuration, we use a myopic algorithm that chooses the operating configuration expected to best reduce the uncertainty in the future belief distribution. We validated this approach on both simulated and real MOX sensors. The results again demonstrate improved estimation performance and robustness to noise.

    Lastly, we present an algorithm that extends active sensing to sensor arrays. This algorithm borrows concepts from feature subset selection to enable an array of tunable sensors operate collaboratively for the classification of gas samples. The algorithm constructs an optimized action vector at each sensing step, which contains separate operating configurations for each sensor in the array. When dealing with sensor arrays, one needs to account for the correlation among sensors. To this end, we developed two objective functions: weighted Fisher scores, and dynamic mutual information, which can quantify the discriminatory information and redundancy of a given action vector with respect to the measurements already acquired. Once again, we validated the approach on simulated FPI arrays and experimentally tested it on an array of MOX sensors. The results show improved classification performance and robustness to additive noise.

publication date

  • August 2013