Activated focal adhesion kinase involved in adhesion and migration of vascular smooth muscle cells stimulated by fibronectin.
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
OBJECTIVE: To study the effects of focal adhesion kinase (FAK) phosphorylation on smooth muscle cells (SMCs) adhesion and migration stimulated by fibronectin. METHODS: Adhesion and migration of cultured SMCs were stimulated by different concentrations of fibronectin (FN), FAK and its phosphorylation were detected by immunoprecipitation and Western blot. FAK antisense oligodeoxynucleotides (ODNs) were transfected into SMCs by cationic lipid to investigate its modulatory effects on tyrosine phosphorylation. SMCs adhesion and migration were also measured by morphological enumeration and modified Boyden Chambers, respectively. RESULTS: FAK were expressed when SMCs adhesion and migration were successfully simulated by different concentrations of FN. FAK phosphorylation were detected only at 20 microg/ml FN or more. FAK antisense ODNs were transfected efficiently by cationic lipid and FAK phosphorylation was inhibited substantially. The SMCs migration rate in the 5 - 60 microg/ml FN groups was reduced by 17.89% - 27.67%. Cell migration stimulated by FN at 10, 20, 40 and 60 microg/ml were reduced by 23.26%, 21.63%, 19.31% and 17.88%, respectively (P < 0.05). CONCLUSIONS: FAK phosphorylation and FAK-mediated signal transduction play important roles in SMCs adhesion and migration stimulated by ECM. The process can be inhibited effectively by FAK antisense ODNs.