Recombinant human IL-6 suppresses demyelination in a viral model of multiple sclerosis.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We used a murine model of multiple sclerosis (MS) induced by Theiler's murine encephalomyelitis virus (TMEV) to test the effect of IL-6 on central nervous system (CNS) demyelination. Administration of human rIL-6 (2.5 micrograms/dose), beginning one day before infection and then twice daily for 28 days, dramatically reduced demyelination and inflammation in the spinal cord of susceptible SJL/J mice. Benefit also was observed when rIL-6 was used as a therapeutic agent and begun on day 15 after infection, a time in which there is the first evidence of inflammation and demyelination in the spinal cord. Suppression of myelin damage by treatment with rIL-6 was associated with fewer virus Ag-positive cells in the spinal cord. Infectious CNS virus titers, as measured by plaque assay, were reduced in rIL-6-treated animals on day 15 after infection, but not on day 7, 22, or 29 after infection. Total serum Igs and virus-specific Igs, as detected by indirect ELISA, were increased markedly in rIL-6-treated mice, whereas no effect was observed on TMEV-neutralizing Ab titers. In vivo administration of rIL-6 inhibited a murine CNS-demyelinating disease induced by a virus, suggesting that this IL may have application for the treatment of human MS.