Down‐regulation of placental mTOR, insulin/IGF‐I signaling, and nutrient transporters in response to maternal nutrient restriction in the baboon Academic Article uri icon


  • The mechanisms by which maternal nutrient restriction (MNR) causes reduced fetal growth are poorly understood. We hypothesized that MNR inhibits placental mechanistic target of rapamycin (mTOR) and insulin/IGF-I signaling, down-regulates placental nutrient transporters, and decreases fetal amino acid levels. Pregnant baboons were fed control (ad libitum, n=11) or an MNR diet (70% of controls, n=11) from gestational day (GD) 30. Placenta and umbilical blood were collected at GD 165. Western blot was used to determine the phosphorylation of proteins in the mTOR, insulin/IGF-I, ERK1/2, and GSK-3 signaling pathways in placental homogenates and expression of glucose transporter 1 (GLUT-1), taurine transporter (TAUT), sodium-dependent neutral amino acid transporter (SNAT), and large neutral amino acid transporter (LAT) isoforms in syncytiotrophoblast microvillous membranes (MVMs). MNR reduced fetal weights by 13%, lowered fetal plasma concentrations of essential amino acids, and decreased the phosphorylation of placental S6K, S6 ribosomal protein, 4E-BP1, IRS-1, Akt, ERK-1/2, and GSK-3. MVM protein expression of GLUT-1, TAUT, SNAT-2 and LAT-1/2 was reduced in MNR. This is the first study in primates exploring placental responses to maternal undernutrition. Inhibition of placental mTOR and insulin/IGF-I signaling resulting in down-regulation of placental nutrient transporters may link maternal undernutrition to restricted fetal growth.

altmetric score

  • 0.5

author list (cited authors)

  • Kavitha, J. V., Rosario, F. J., Nijland, M. J., McDonald, T. J., Wu, G., Kanai, Y., ... Jansson, T.

citation count

  • 87
  • 89

publication date

  • December 2013