Correction of a mineralization defect by overexpression of a wild-type cDNA for COL1A1 in marrow stromal cells (MSCs) from a patient with osteogenesis imperfecta: a strategy for rescuing mutations that produce dominant-negative protein defects.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Gene therapy for dominant-negative disorders presents a more difficult challenge than gene therapy for recessive disorders, since even partial replacement of a protein for a recessive disorder can reverse symptoms. Osteogenesis imperfecta (OI) has frequently served as a model disorder for dominant-negative defects of structural proteins. The disease is caused by mutations in type I collagen (COL1A1), the major structural component of bone, skin and other connective tissues. The severity of the phenotype is largely dependent on the ratio of normal to mutant type I procollagen synthesized by cells. Recently, attempts have been made to develop strategies for cell and gene therapies using the adult stem cells from bone marrow referred to as mesenchymal stem cells or marrow stromal cells (MSCs). In this study, we used MSCs from a patient with type III OI who was heterozygous for an IVS 41A+4C mutation in COL1A1. A hybrid genomic / cDNA construct of COL1A1 was transfected into the MSCs and the transfectants were expanded over a 200-fold. Transfected MSCs showed increased expression of the wild-type mRNA and protein. In vitro assays demonstrated that the transfected cells more efficiently differentiated into mineralizing cells. The results indicated that it is possible to overexpress COL1A1 cDNA in OI MSCs and thereby to correct partially the dominant-negative protein defect.
published proceedings
Gene Ther
author list (cited authors)
Pochampally, R. R., Horwitz, E. M., DiGirolamo, C. M., Stokes, D. S., & Prockop, D. J.
citation count
53
complete list of authors
Pochampally, RR||Horwitz, EM||DiGirolamo, CM||Stokes, DS||Prockop, DJ