Quantitative characterization of functional anatomical contributions to cognitive control under uncertainty. Academic Article uri icon


  • Although much evidence indicates that RT increases as a function of computational load in many cognitive tasks, quantification of changes in neural activity related to increasing demand of cognitive control has rarely been attempted. In this fMRI study, we used a majority function task to quantify the effect of computational load on brain activation, reflecting the mental processes instantiated by cognitive control under conditions of uncertainty. We found that the activation of the frontoparieto-cingulate system as well as the deactivation of the anticorrelated default mode network varied parametrically as a function of information uncertainty, estimated as entropy with an information theoretic model. The current findings suggest that activity changes in the dynamic networks of the brain (especially the frontoparieto-cingulate system) track with information uncertainty, rather than only conflict or other commonly proposed targets of cognitive control.

published proceedings

  • J Cogn Neurosci

altmetric score

  • 0.5

author list (cited authors)

  • Fan, J., Van Dam, N. T., Gu, X., Liu, X., Wang, H., Tang, C. Y., & Hof, P. R.

citation count

  • 43

complete list of authors

  • Fan, Jin||Van Dam, Nicholas T||Gu, Xiaosi||Liu, Xun||Wang, Hongbin||Tang, Cheuk Y||Hof, Patrick R

publication date

  • July 2014