selected publications academic article Prakash, A., Tuo, R., & Ding, Y. u. (2023). The Temporal Overfitting Problem with Applications in Wind Power Curve Modeling. Technometrics. 65(1), 70-82. Jin, S., Tuo, R., Tiwari, A., Bukkapatnam, S., Aracne-Ruddle, C., Lighty, A., Hamza, H., & Ding, Y. u. (2022). Hypothesis tests with functional data for surface quality change detection in surface finishing processes. IISE TRANSACTIONS. 55(9), 1-17. Chen, G., & Tuo, R. (2022). Projection pursuit Gaussian process regression. IISE TRANSACTIONS. 55(9), 901-911. Prakash, A., Tuo, R., & Ding, Y. u. (2022). Gaussian Process-Aided Function Comparison Using Noisy Scattered Data. Technometrics. 64(1), 92-102. Tuo, R., He, S., Pourhabib, A., Ding, Y. u., & Huang, J. Z. (2021). A Reproducing Kernel Hilbert Space Approach to Functional Calibration of Computer Models. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION. 1-15. Zhang, W., Krehbiel, S., Tuo, R., Mei, Y., & Cummings, R. (2021). Single and Multiple Change-Point Detection with Differential Privacy. JOURNAL OF MACHINE LEARNING RESEARCH. 22. Wang, Y., Yue, X., Tuo, R., Hunt, J. H., & Shi, J. (2020). EFFECTIVE MODEL CALIBRATION VIA SENSIBLE VARIABLE IDENTIFICATION AND ADJUSTMENT WITH APPLICATION TO COMPOSITE FUSELAGE SIMULATION. Annals of Applied Statistics. 14(4), 1759-1776. Prakash, A., Tuo, R., & Ding, Y. u. (2020). The temporal overfitting problem with applications in wind power curve modeling Tuo, R., & Wang, W. (2020). Kriging Prediction with Isotropic Matern Correlations: Robustness and Experimental Designs. JOURNAL OF MACHINE LEARNING RESEARCH. 21. Wang, Y., & Tuo, R. (2020). Semi-parametric adjustment to computer models. Statistics: a journal of theoretical and applied statistics. 54(6), 1255-1275. Chen, Z., Tuo, R., & Zhang, W. (2020). A BALANCED OVERSAMPLING FINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS WITH OBSERVATIONAL BOUNDARY DATA. 38(2), 355-374. Ding, L., Zou, L. u., Wang, W., Shahrampour, S., & Tuo, R. (2020). High-Dimensional Non-Parametric Density Estimation in Mixed Smooth Sobolev Spaces Chen, G., & Tuo, R. (2020). Projection Pursuit Gaussian Process Regression Tuo, R., & Wang, W. (2020). Uncertainty Quantification for Bayesian Optimization Tuo, R., Wang, Y., & Wu, C. (2020). On the Improved Rates of Convergence for Matern-Type Kernel Ridge Regression with Application to Calibration of Computer Models. SIAM/ASA Journal on Uncertainty Quantification. 8(4), 1522-1547. Wang, W., Tang, S., Li, C., Chen, J., Li, H., Su, Y., & Ning, B. (2019). Specific Brain Morphometric Changes in Spinal Cord Injury: A Voxel-Based Meta-Analysis of White and Gray Matter Volume. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION. 36(15), 2348-2357. Joseph, V. R., Wang, D., Gu, L. i., Lyu, S., & Tuo, R. (2019). Deterministic Sampling of Expensive Posteriors Using Minimum Energy Designs. Technometrics. 61(3), 297-308. Tuo, R. (2019). Adjustments to Computer Models via Projected Kernel Calibration. SIAM/ASA Journal on Uncertainty Quantification. 7(2), 553-578. Su, H., Tuo, R., & Wu, C. (2019). PIG PROCESS: JOINT MODELING OF POINT AND INTEGRAL RESPONSES IN COMPUTER EXPERIMENTS. International Journal for Uncertainty Quantification. 9(4), 331-349. Tuo, R., & Wu, C. (2018). PREDICTION BASED ON THE KENNEDY-O'HAGAN CALIBRATION MODEL: ASYMPTOTIC CONSISTENCY AND OTHER PROPERTIES. STATISTICA SINICA. 28(2), 743-759. Tuo, R. (2018). UNCERTAINTY QUANTIFICATION WITH alpha-STABLE-PROCESS MODELS. STATISTICA SINICA. 28(2), 553-576. Cummings, R., Krehbiel, S., Mei, Y., Tuo, R., & Zhang, W. (2018). Differentially Private Change-Point Detection. Advances in Neural Information Processing Systems. 31, 10825-10834. Chen, Z., Tuo, R., & Zhang, W. (2018). STOCHASTIC CONVERGENCE OF A NONCONFORMING FINITE ELEMENT METHOD FOR THE THIN PLATE SPLINE SMOOTHER FOR OBSERVATIONAL DATA. SIAM Journal on Numerical Analysis. 56(2), 635-659. Chen, Z., Tuo, R., & Zhang, W. (2017). A finite element method for elliptic problems with observational boundary data He, X. u., Tuo, R., & Wu, C. (2017). Optimization of Multi-Fidelity Computer Experiments via the EQIE Criterion. Technometrics. 59(1), 58-68. Tuo, R., & Wu, C. (2016). A Theoretical Framework for Calibration in Computer Models: Parametrization, Estimation and Convergence Properties. SIAM/ASA Journal on Uncertainty Quantification. 4(1), 767-795. Joseph, V. R., Dasgupta, T., Tuo, R., & Wu, C. (2015). Sequential Exploration of Complex Surfaces Using Minimum Energy Designs. Technometrics. 57(1), 64-74. Plumlee, M., & Tuo, R. (2014). Building Accurate Emulators for Stochastic Simulations via Quantile Kriging. Technometrics. 56(4), 466-473. Tuo, R., Wu, C., & Yu, D. (2014). Surrogate Modeling of Computer Experiments With Different Mesh Densities. Technometrics. 56(3), 372-380. Tuo, R., Qian, P., & Wu, C. (2013). Comment: A Brownian Motion Model for Stochastic Simulation With Tunable Precision. Technometrics. 55(1), 29-+. Ding, L., Tuo, R., & Shahrampour, S. A Sparse Expansion For Deep Gaussian Processes. IISE TRANSACTIONS. 1-25. conference paper Tuo, R., & Wang, W. (2022). Uncertainty Quantification for Bayesian Optimization Ding, L., Tuo, R., & Shahrampour, S. (2020). Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal Features. 2875-2884. Ding, L., Tuo, R., & Shahrampour, S. (2020). Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal Features Ding, L., Tuo, R., & Shahrampour, S. (2019). Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal Features institutional repository document Chen, G., Zhou, Y. u., Zhang, X., & Tuo, R. (2022). Renewing Iterative Self-labeling Domain Adaptation with Application to the Spine Motion Prediction Jin, S., Tuo, R., Tiwari, A., Bukkapatnam, S., Aracne-Ruddle, C., Lighty, A., Hamza, H., & Ding, Y. u. (2022). Hypothesis Tests with Functional Data for Surface Quality Change Detection in Surface Finishing Processes Chen, H., Ding, L., & Tuo, R. (2022). Kernel Packet: An Exact and Scalable Algorithm for Gaussian Process Regression with Matrn Correlations Ding, L., Tuo, R., & Shahrampour, S. (2021). A Sparse Expansion For Deep Gaussian Processes Ding, L., Tuo, R., & Zhang, X. (2021). High-Dimensional Simulation Optimization via Brownian Fields and Sparse Grids Tuo, R., He, S., Pourhabib, A., Ding, Y. u., & Huang, J. Z. (2021). A Reproducing Kernel Hilbert Space Approach to Functional Calibration of Computer Models Prakash, A., Tuo, R., & Ding, Y. u. (2020). The temporal overfitting problem with applications in wind power curve modeling Ding, L., Zou, L. u., Wang, W., Shahrampour, S., & Tuo, R. (2020). High-Dimensional Non-Parametric Density Estimation in Mixed Smooth Sobolev Spaces Chen, G., & Tuo, R. (2020). Projection Pursuit Gaussian Process Regression Prakash, A., Tuo, R., & Ding, Y. u. (2020). Gaussian process aided function comparison using noisy scattered data Ding, L., Tuo, R., & Shahrampour, S. (2020). Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal Features Tuo, R., Wang, Y., & Wu, C. (2020). On the Improved Rates of Convergence for Matérn-type Kernel Ridge Regression, with Application to Calibration of Computer Models Wang, Y., Yue, X., Tuo, R., Hunt, J. H., & Shi, J. (2019). Effective Model Calibration via Sensible Variable Identification and Adjustment, with Application to Composite Fuselage Simulation Tuo, R., & Wang, W. (2019). Kriging prediction with isotropic Matérn correlations: Robustness and experimental design Cummings, R., Krehbiel, S., Mei, Y., Tuo, R., & Zhang, W. (2018). Differentially Private Change-Point Detection Joseph, V. R., Wang, D., Gu, L. i., Lv, S., & Tuo, R. (2017). Deterministic Sampling of Expensive Posteriors Using Minimum Energy Designs Wang, W., Tuo, R., & Wu, C. (2017). On Prediction Properties of Kriging: Uniform Error Bounds and Robustness Tuo, R. (2017). Adjustments to Computer Models via Projected Kernel Calibration Tuo, R., & Wu, C. (2017). Prediction based on the Kennedy-O'Hagan calibration model: asymptotic consistency and other properties Chen, Z., Tuo, R., & Zhang, W. (2017). A finite element method for elliptic problems with observational boundary data Chen, Z., Tuo, R., & Zhang, W. (2017). Stochastic Convergence of A Nonconforming Finite Element Method for the Thin Plate Spline Smoother for Observational Data Tuo, R., & Wu, C. (2015). A theoretical framework for calibration in computer models: parametrization, estimation and convergence properties Tuo, R., & Wu, C. (2015). Efficient Calibration for Imperfect Computer Models
principal investigator on Collaborative Research: Uncertainty Quantification, Optimal Designs and Calibration in Computer Experiments awarded by Directorate for Mathematical & Physical Sciences - (Arlington, Virginia, United States) 2019 - 2022
teaching activities DAEN321 Quant Models Stat & Mach Lear Instructor ISEN609 Prob Engr Decisions Instructor ISEN616 Des & Analy Ind Exper Instructor ISEN619 Analysis & Prediction Instructor ISEN685 Directed Studies Instructor ISEN689 Sptp: Computer Experiments Instructor ISEN691 Research Instructor
education and training Ph.D. in Statistics, Chinese Academy of Sciences - (Beijing, Beijing, China) 2013 M.S. in Statistics, Chinese Academy of Sciences - (Beijing, Beijing, China) 2010 B.S. in Statistics, University of Science and Technology of China - (Hefei, China) 2008