Silva Hernandez, Carlos Ardenis A. (2011-08). Molecular Dynamic Simulation of Thermo-Mechanical Properties of Ultra-Thin Poly(methyl methacrylate) Films. Doctoral Dissertation. Thesis uri icon

abstract

  • The thermal conductivity of PMMA films with thicknesses from 5 to 50 nanometers and layered over a treated silicon substrate is explored numerically by the application of the reverse non-equilibrium molecular dynamics (NEMD) technique and the development of a coarse-grained model for PMMA, which allows for the simulation time of hundreds of nanoseconds required for the study of large polymer systems. The results showed a constant average thermal conductivity of 0.135 W/m_K for films thickness ranging from 15 to 50 nm, while films under 15 nm in thickness showed a reduction of 30% in their conductivity. It was also observed that polymer samples with a degree of polymerization equal to 25% of the entanglement length had 50% less thermal conductivity than films made of longer chains. The temperature profiles through the films thickness were as predicted by the Fourier equation of heat transfer. The relative agreement between the thermal conductivity from experiments (0.212 W/m_K for bulk PMMA) and the results from this investigation shows that with the proper interpretation of results, the coarse-grained NEMD is a useful technique to study transport coefficients in systems at larger nano scales.

publication date

  • August 2011