Identification of a gene that affects the efficiency of host cell infection by Legionella pneumophila in a temperature-dependent fashion.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The ability to infect host cells is critical for the survival and replication of intracellular pathogens in humans. We previously found that many genes involved in the ability of Legionella pneumophila to infect macrophages are not expressed efficiently under standard laboratory growth conditions. We have developed an approach using expression of L. pneumophila genes from an exogenous constitutive promoter on a low-copy-number vector that allows identification of genes involved in host cell infection. Through the use of this strategy, we found that expression of a gene, lvhB2, enhances the efficiency of L. pneumophila infection of mammalian cells. The putative protein encoded by lvhB2 has similarity to structural pilin subunits of type IV secretion systems. We confirmed that this gene plays a role in host cell infection by the construction of an in-frame deletion in the L. pneumophila lvhB2 gene and complementation of this mutant with the wild-type gene. The lvhB2 mutant does not display a very obvious defect in interactions with host cells when the bacteria are grown at 37 degrees C, but it has an approximately 100-fold effect on entry and intracellular replication when grown at 30 degrees C. These data suggest that lvhB2 plays an important role in the efficiency of host cell infection by L. pneumophila grown at lower temperatures.