Promoter methylation is associated with the age-dependent loss of N-cadherin in the rat kidney.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The cadherins are cell adhesion molecules required for cellular homeostasis, and N-cadherin is the predominant cadherin expressed in proximal tubular epithelial cells in humans and rats. Our laboratory previously reported an age-dependent decrease in renal N-cadherin expression; the levels of N-cadherin mRNA and protein expression decreased in parallel, implicating a transcriptional mechanism in the age-dependent loss of expression (19). In this study, we examined the hypothesis that promoter hypermethylation underlies the loss of N-cadherin expression in aging rat kidney. We cloned the 5' flanking region of the rat N-cadherin gene and observed basic promoter activity in a 3,992-bp region localized immediately upstream of the ATG start site. Nucleotide analysis revealed 87% identity with the human N-cadherin minimal promoter region. Consistent with a role for regulation by DNA methylation, we found that a dense CpG island, which spans 1,104 bp (-1,158 to -55), flanks the rat N-cadherin gene; a similar CpG profile was found in the human N-cadherin 5' flanking region. Methylation-specific PCR analysis demonstrated that the promoter region of N-cadherin is heavily methylated in aged, but not young, rat kidney. Interestingly, the promoter is not methylated in age-matched, calorically restricted animals. In contrast, the promoter region is not methylated in either young or aged rat liver; this corresponds to the finding that aging is not associated with decreased N-cadherin expression in the liver. In addition, N-cadherin expression is markedly induced in NRK-52E cells treated with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine, further suggesting that methylation at CpG in the promoter region may underlie the age-dependent decrease in renal N-cadherin expression.