Evaluation study of a portable impedance biosensor for detection of avian influenza virus.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Current methods for detection of avian influenza virus (AIV) based on virus culture and RT-PCR are well established, but they are either time consuming or require specialized laboratory facilities and highly trained technicians. A simple, rapid, robust, and reliable test, suitable for use in the field or at the patient's bedside, is urgently needed. In this study, the performance of a newly developed portable impedance biosensor was evaluated by comparison with real-time reverse transcriptase PCR (rRT-PCR) and virus culture for detection of AIV in tracheal and cloacal swab samples collected from experimentally H5N2 AIV infected chickens. The impedance biosensor system was based on a combination of magnetic nanobeads, which were coated with AIV subtype-specific antibody for capture (separation and concentration) of a target virus, and a microfluidic chip with an interdigitated array microelectrode for transfer and detection of target virus, and impedance measurement of the bio-nanobeads and AI virus complexes in a buffer solution. A comparison of results obtained from 59 swab samples using virus culture, impedance biosensor and rRT-PCR methods showed that the impedance biosensor technique was comparable in sensitivity and specificity to rRT-PCR. Detection time for the impedance biosensor is less than 1h.