Investigation of parametric spectral estimation techniques for elasticity imaging.
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Several autoregressive (AR) and autoregressive moving average (ARMA) parametric spectral estimators were evaluated for use in tissue strain estimation. Using both 1-D simulations and in vitro phantom experiments, the performance of these parametric spectral strain estimators were compared against both a nonparametric discrete Fourier transform (DFT) spectral strain estimator and a coherent elastographic technique. Parametric spectral estimator model orders were selected based on a modified strain filter approach. This technique illustrated the trade-offs between different signal-processing parameters and a strain estimator performance measure, namely the area under the strain filter (using applied strain dynamic range of 0.1 to 50%). The Yule-Walker AR spectral strain estimator outperformed all other parametric methods evaluated, but failed to outperform the DFT-based approach. Furthermore, both these spectral strain-estimation techniques exhibit an elastographic signal-to-noise ratio (SNR(e)) and strain estimation dynamic range not achievable using conventional elastography without global stretching.