Three-dimensional super-resolution ultrasound imaging of chicken embryos - A validation framework for analysis of microvascular morphology.
Conference Paper
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The purpose of this present study was to improve the quantification of microvascular networks depicted in three-dimensional (3D) super-resolution ultrasound (SR-US) images and compare results with matched brightfield microscopy and B-mode ultrasound (US) images. Standard contrast-enhanced US (CEUS) images were collected using a high-frequency US scanner (Vevo 3100, FUJIFILM VisualSonics Inc) equipped with an MX250 linear array transducer. Using a developing chicken embryo as our model system, US imaging was performed after administration of a custom microbubble (MB) contrast agent. Guided by stereo microscopy, MBs were introduced into a perfused blood vessel by microinjection with a glass capillary needle. Volume data was collected by mechanically scanning the US transducer throughout a tissue volume-of-interest (VOI) in 90 m step increments. CEUS images were collected at each increment and stored as in-phase/quadrature (IQ) data (N = 2000 at 152 frames per sec). SR-US images were created for each cross-sectional plane using established data processing methods, and all were then used to form a final 3D volume for subsequent quantification of morphological features. Vessel diameter quantifications from 3D SR-US data exhibited an average error of 1.9% when compared with microscopy images, whereas measures from B-mode US images had an average error of 75.3%. Overall, 3D SR-US images clearly depicted the microvascular network of the developing chicken embryo and measurements of microvascular morphology achieved better accuracy compared to traditional B-mode US.
name of conference
2020 IEEE International Ultrasonics Symposium (IUS)