Defense mechanisms against oxidative stress in Coxiella burnetii: adaptation to a unique intracellular niche. Academic Article uri icon


  • Survival of intracellular pathogenic bacteria depends on the ability to resist host-mediated degradation and to generate a replicative niche within the host. Usually, after internalization by professional phagocytic cells, the bacteria containing vacuole or phagosome traffics through the endocytic pathway, progressively acidifies and develops into a degradative mature phagolysosome. In this environment bacteria are exposed to a wide variety of anti-microbial agents, such as defensins, proteases, and reactive oxygen species (ROS) and reactive nitrogen species (RNS). Most parasitizing bacteria have evolved strategies to interfere with this maturation process and to direct the development of an environment that supports survival and replication. C. burnetii also follows this paradigm, but directs the biogenesis of a unique parasitophorous vacuole (PV), which resembles, yet is distinct from a terminal phagolysosome. Within the environment of the PV, C. burnetii is exposed to varying levels of ROS and RNS, which represent the primary defense mechanism of the host cell against this invading microorganism. Major mediators for ROS and RNS are superoxide (O (2) (-) ) and nitric oxide (NO(*)), generated by the cellular NADPH oxidase (phox) and inducible nitric oxide synthase (iNOS), respectively. C. burnetii employs several strategies to evade oxidative stress; on the host side (i) delaying phagolysosome fusion and (ii) inhibiting cellular NADPH oxidase. On the bacterial side, maintaining genome stability by (iii) evolving a preference for a low iron environment, (iv) expressing a minimal and likely crucial set of DNA repair genes and (v) detoxifying the PV by ROS and RNS degrading enzymes. Overall defense mechanisms in C. burnetii against oxidative and nitrosative stress and the regulation thereof are not fully defined and our knowledge is mainly based on genome sequence information. Comparison with E. coli as a model bacterium reveals that defense strategies of C. burnetii differ significantly and emphasize a highly adaptive evolution to this harsh and unique niche.

published proceedings

  • Adv Exp Med Biol

author list (cited authors)

  • Mertens, K., & Samuel, J. E.

citation count

  • 18

complete list of authors

  • Mertens, Katja||Samuel, James E

publication date

  • May 2012