Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
L-Glutamine (the most abundant free amino acid in plasma and the body) is a potent inhibitor of endothelial NO synthesis. However, little is known about glutamine metabolism in endothelial cells (EC). As an initial step toward understanding the role of glutamine in endothelial physiology, the present study was conducted to quantify glutamine catabolism in microvascular, aortic and venous EC. For metabolic studies, EC were incubated for 1 h in Krebs bicarbonate buffer containing 5 mM glucose and 0.5-4 mM L-[U-(14)C]-glutamine. For enzymological studies, cell extracts and mitochondrial fractions were prepared to determine the activities of glutamine-degrading enzymes. Our results reveal extensive hydrolysis of glutamine to glutamate and ammonia in a concentration-dependent manner via phosphate-dependent glutaminase in all EC studied. In addition, both metabolic and enzymological evidence indicate a novel pathway for endothelial synthesis of ornithine from glutamine via pyrroline-5-carboxylate synthase. This new knowledge of glutamine metabolism may pave a new path for understanding the physiological role of glutamine in vascular function.