Functional genomics: the coming of age for Tetrahymena thermophila.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Over the past decade, researchers have manipulated the unique biology of Tetrahymena thermophila to generate a premier experimental organism for functional genomic analysis. A diverse array of DNA transformation methods have spearheaded in vivo strategies for discovering and dissecting universal eukaryotic processes, such as telomere addition and chromatin remodeling. Compartmentalization of this protist's genome into two functionally distinct nuclei - the silent 'germline' micronucleus and the transcriptionally active macronucleus - provides a powerful means for controlling the expression of transgenes. Heterokaryons that silently harbor homozygous recessive mutations (including lethal ones) in the germline have been exploited. The coupling of forward and reverse genetic approaches with genomics-based methods for gene discovery presents a bright future for research in this rising model eukaryote.