Estrogen status and skeletal muscle recovery from disuse atrophy.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Although estrogen loss can alter skeletal muscle recovery from disuse, the specific components of muscle regrowth that are estrogen sensitive have not been described. The primary purpose of this study was to determine the components of skeletal muscle mass recovery that are biological targets of estrogen. Intact, ovariectomized (OVX), and ovariectomized with 17beta-estradiol replacement (OVX+E2) female rats were subjected to hindlimb suspension for 10 days and then returned to normal cage ambulation for the duration of recovery. Soleus muscle mass returned to control levels by day 7 of recovery in the intact animals, whereas OVX soleus mass did not recover until day 14. Intact rats recovered soleus mean myofiber cross-sectional area (CSA) by day 14 of recovery, whereas the OVX soleus remained decreased (42%) at day 14. OVX mean fiber CSA did return to control levels by day 28 of recovery. The OVX+E2 treatment group recovered mean CSA at day 14, as in the intact animals. Myofibers demonstrating central nuclei were increased at day 14 in the OVX group, but not in intact or OVX+E2 animals. The percent noncontractile tissue was also increased 29% in OVX muscle at day 14, but not in either intact or OVX+E2 groups. In addition, collagen 1a mRNA was increased 45% in OVX muscle at day 14 of recovery. These results suggest that myofiber growth, myofiber regeneration, and extracellular matrix remodeling are estrogen-sensitive components of soleus muscle mass recovery from disuse atrophy.