Resistance to murine hepatitis virus strain 3 is dependent on production of nitric oxide. Academic Article uri icon

abstract

  • The strain-specific spectrum of liver disease following murine hepatitis virus type 3 (MHV-3) infection is dependent on inflammatory mediators released by macrophages. Production of nitric oxide (NO) by macrophages has been implicated in resistance to a number of viruses, including ectromelia virus, vaccinia virus, and herpes simplex virus type 1. This study was undertaken to define the role of NO in MHV-3 infection. Gamma interferon-induced production of NO inhibited growth of MHV-3 in a murine macrophage cell line (RAW 264.7). Viral inhibitory activity was reproduced by the NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP), whereas N-acetyl-DL-pencillamine (NAP), an inactive analog of SNAP, had no effect. Electron microscopy studies confirmed the inhibitory effects of NO on viral replication. Peritoneal macrophages isolated from A/J mice known to be resistant to MHV-3 produced a fivefold-higher level of NO and higher levels of mRNA transcripts of inducible NO synthase in response to gamma interferon than macrophages from susceptible BALB/cJ mice. SNAP inhibited growth of MHV-3 in macrophages from both strains of mice to similar degrees. In vivo inhibition of NO by N-monomethyl-L-arginine resulted in loss of resistance to MHV-3 in A/J mice. These results collectively demonstrate a defect in the production of NO in macrophages from susceptible BALB/cJ mice and define the importance of endogenous NO in resistance to MHV-3 infection in resistant A/J mice.

published proceedings

  • J Virol

altmetric score

  • 3

author list (cited authors)

  • Pope, M., Marsden, P. A., Cole, E., Sloan, S., Fung, L. S., Ning, Q., ... Levy, G. A.

citation count

  • 47

complete list of authors

  • Pope, M||Marsden, PA||Cole, E||Sloan, S||Fung, LS||Ning, Q||Ding, JW||Leibowitz, JL||Phillips, MJ||Levy, GA

publication date

  • September 1998