Quasi-Z-Source Inverter-Based Photovoltaic Generation System With Maximum Power Tracking Control Using ANFIS
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The paper proposes an artificial-intelligence-based solution to interface and deliver maximum power from a photovoltaic (PV) power generating system in standalone operation. The interface between the PV dc source and the load is accomplished by a quasi-Z-source inverter (qZSI). The maximum power delivery to the load is ensured by an adaptive neuro-fuzzy inference system (ANFIS) based on maximum power point tracking (MPPT). The proposed ANFIS-based MPPT offers an extremely fast dynamic response with high accuracy. The closed-loop control of the qZSI regulates the shoot through duty ratio and the modulation index to effectively control the injected power and maintain the stringent voltage, current, and frequency conditions. The proposed technique is tested for isolated load conditions. Simulation and experimental approaches are used to validate the proposed scheme. 2010-2012 IEEE.