Molecular and physiological effects of alpha-tropomyosin ablation in the mouse.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Tropomyosin (TM) is an integral component of the thin filament in muscle fibers and is involved in regulating actin-myosin interactions. TM is encoded by a family of four alternatively spliced genes that display highly conserved nucleotide and amino acid sequences. To assess the functional and developmental significance of alpha-TM, the murine alpha-TM gene was disrupted by homologous recombination. Homozygous alpha-TM null mice are embryonic lethal, dying between 8 and 11.5 days post coitum. Mice that are heterozygous for alpha-TM are viable and reproduce normally. Heterozygous knockout mouse hearts show a 50% reduction in cardiac muscle alpha-TM mRNA, with no compensatory increase in transcript levels by striated muscle beta-TM or TM-30 isoforms. Surprisingly, this reduction in alpha-TM mRNA levels in heterozygous mice is not reflected at the protein level, where normal amounts of striated muscle alpha-TM protein are produced and integrated in the myofibril. Quantification of alpha-TM mRNA bound in polysomal fractions reveals that both wild-type and heterozygous knockout animals have similar levels. These data suggest that a change in steady-state level of alpha-TM mRNA does not affect the relative amount of mRNA translated and amount of protein synthesized. Physiological analyses of myocardial and myofilament function show no differences between heterozygous alpha-TM mice and control mice. The present study suggests that translational regulation plays a major role in the control of TM expression.