Multistability and fixed-time multisynchronization of switched neural networks with state-dependent switching rules.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
This paper presents theoretical results on the multistability and fixed-time synchronization of switched neural networks with multiple almost-periodic solutions and state-dependent switching rules. It is shown herein that the number, location, and stability of the almost-periodic solutions of the switched neural networks can be characterized by making use of the state-space partition. Two sets of sufficient conditions are derived to ascertain the existence of 3n exponentially stable almost-periodic solutions. Subsequently, this paper introduces the novel concept of fixed-time multisynchronization in switched neural networks associated with a range of almost-periodic parameters within multiple stable equilibrium states for the first time. Based on the multistability results, it is demonstrated that there are 3n synchronization manifolds, wherein n is the number of neurons. Additionally, an estimation for the settling time required for drive-response switched neural networks to achieve synchronization is provided. It should be noted that this paper considers stable equilibrium points (static multisynchronization), stable almost-periodic orbits (dynamical multisynchronization), and hybrid stable equilibrium states (hybrid multisynchronization) as special cases of multistability (multisynchronization). Two numerical examples are elaborated to substantiate the theoretical results.