Combined neurotrophic supplementation and caspase inhibition enhances survival of fetal hippocampal CA3 cell grafts in lesioned CA3 region of the aging hippocampus. Academic Article uri icon

abstract

  • Fetal hippocampal CA3 cells show excellent survival when homotopically grafted into the kainic acid-lesioned CA3 region of the young adult hippocampus, a model of temporal lobe epilepsy. However, survival of these cells in the kainic acid-lesioned CA3 region of the aging hippocampus is unknown. We hypothesize that fetal CA3 grafts into the lesioned CA3 region of the middle-aged and aged hippocampus exhibit significantly diminished cell survival compared with similar grafts in the lesioned young adult hippocampus unless pre-treated and transplanted with factors that augment graft cell survival. We analyzed cell survival of 5'-bromodeoxyuridine-labeled embryonic day 19 CA3 grafts following their transplantation into the lesioned CA3 region of the middle-aged and aged rat hippocampus. Grafts were placed 4 days after an i.c.v. administration of kainic acid, and absolute cell survival of grafts was quantified 1 month after grafting using 5'-bromodeoxyuridine immunostaining of serial sections and the optical fractionator counting method. Grafts into both middle-aged and aged hippocampus exhibited analogous but significantly diminished cell survival (30% of injected cells) compared with similar grafts into the young adult hippocampus (72% cell survival). However, the extent of cell survival of CA3 grafts pre-treated and transplanted with a combination of neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 and the caspase inhibitor acetyl-tyrosinyl-valyl-alanyl-aspartyl-chloro-methylketone was significantly enhanced in both middle-aged and aged hippocampus (51-63% cell survival). These results underscore that aging impairs the conduciveness of the CA3 region for robust survival of homotopic fetal CA3 grafts after lesion. However, a combined neurotrophic supplementation and caspase inhibition significantly enhances survival of fetal CA3 cells in the lesioned aging hippocampus. Thus, pre-treatment and grafting of donor cells with a combination of factors that support growth of specific donor cells may considerably enhance survival and integration of fetal grafts into the lesioned aging CNS in clinical trials.

published proceedings

  • Neuroscience

author list (cited authors)

  • Zaman, V., & Shetty, A. K

citation count

  • 34

complete list of authors

  • Zaman, V||Shetty, AK

publication date

  • February 2002