Qi, Li (2004-12). AC system stability analysis and assessment for Shipboard Power Systems. Doctoral Dissertation. Thesis uri icon

abstract

  • The electric power systems in U.S. Navy ships supply energy to sophisticated systems for weapons, communications, navigation and operation. The reliability and survivability of a Shipboard Power System (SPS) are critical to the mission of a Navy ship, especially under battle conditions. When a weapon hits the ship in the event of battle, it can cause severe damage to the electrical systems on the ship. Researchers in the Power System Automation Laboratory (PSAL) at Texas A&M University have developed methods for performing reconfiguration of SPS before or after a weapon hit to reduce the damage to SPS. Reconfiguration operations change the topology of an SPS. When a system is stressed, these topology changes and induced dynamics of equipment due to reconfiguration might cause voltage instability, such as progressive voltage decreases or voltage oscillations. SPS stability thus should be assessed to ensure the stable operation of a system during reconfiguration.
    In this dissertation, time frames of SPS dynamics are presented. Stability problems during SPS reconfiguration are classified as long-term stability problems. Since angle stability is strongly maintained in SPS, voltage stability is studied in this dissertation for SPS stability during reconfiguration. A test SPS computer model, whose simulation results were used for stability studies, is presented in this dissertation. The model used a new generalized methodology for modeling and simulating ungrounded stiffly grounded power systems.
    This dissertation presents two new indices, a static voltage stability index (SVSILji) and a dynamic voltage stability index (DVSI), for assessing the voltage stability in static and dynamic analysis. SVSILji assesses system stability by all lines in SPS. DVSI detects local bifurcations in SPS. SVSILji was found to be a better index in comparison with some indices in the literature for a study on a two-bus power system. Also, results of DVSI were similar to the results of conventional bifurcation analysis software when applied to a small power system. Using SVSILji and DVSI on the test SPS computer model, three of four factors affection voltage stability during SPS reconfiguration were verified. During reconfiguration, SVSILji and DVSI are used together to assess SPS stability.

publication date

  • December 2004