Non-affinity of liquid networks and bicontinuous mesophases Institutional Repository Document uri icon

abstract

  • Amphiphiles self-assemble into a variety of bicontinuous mesophases whose equilibrium structures take the form of high-symmetry cubic networks. Here, we show that the symmetry-breaking distortions in these systems give rise to anomalously large, non-affine collective deformations, which we argue to be a generic consequence of mass equilibration within deformed networks. We propose and study a minimal liquid network model of bicontinuous networks, in which acubic distortions are modeled by the relaxation of residually-stressed mechanical networks with constant-tension bonds. We show that non-affinity is strongly dependent on the valency of the network as well as the degree of strain-softening/stiffening force in the bonds. Taking diblock copolymer melts as a model system, liquid network theory captures quantitative features of two bicontinuous phases based on comparison with self-consistent field theory predictions and direct experimental characterization of acubic distortions, which are likely to be pronounced in soft amphiphilic systems more generally.

author list (cited authors)

  • Dimitriyev, M. S., Feng, X., Thomas, E. L., & Grason, G. M.

citation count

  • 0

complete list of authors

  • Dimitriyev, Michael S||Feng, Xueyan||Thomas, Edwin L||Grason, Gregory M

Book Title

  • arXiv

publication date

  • November 2023