Floquet Isospectrality of the Zero Potential for Discrete Periodic Schrdinger Operators
Institutional Repository Document
Overview
Research
Identity
View All
Overview
abstract
Let $Gamma=q_1mathbb{Z}oplus q_2 mathbb{Z}opluscdotsoplus q_dmathbb{Z}$, with $q_jin (mathbb{Z}^+)^d$ for each $jin {1,ldots,d}$, and denote by $Delta$ the discrete Laplacian on $ell^2left( mathbb{Z}^d ight)$. Using Macaulay2, we first numerically find complex-valued $Gamma$-periodic potentials $V:mathbb{Z}^d o mathbb{C}$ such that the operators $Delta+V$ and $Delta$ are Floquet isospectral. We then use combinatorial methods to validate these numerical solutions.