Escherichia coli resistance mechanism AcrAB-TolC efflux pump interactions with commonly used antibiotics: a molecular dynamics study. Academic Article uri icon

abstract

  • While antibiotic resistance poses a threat from both Gram-positive bacteria(GPB) and Gram-negative bacteria (GNB), GNB pose a more imminent public health hazard globally. GNB are a threat to growing antibiotic resistance because of the complex makeup of the membrane. The AcrAB-TolC efflux pump is a known resistance mechanism of Escherichia coli(E. coli) cells. This study utilized molecular dynamics modeling to visualize some of the changes occurring at a molecular level when airborne bacteria are exposed to stress and antibiotics. This study was conducted to build upon previous experimental research showing that there is an increase in antibiotic resistance and efflux pump activity when exposed to aerosolization. AcrB and AcrAB-TolC proteins were simulated under standard and increased pressure to compare the effect of aerosolization on the binding to the three different antibiotics (puromycin (PUY), ampicillin (AMP) and sulfamethoxazole-trimethoprim(SXT)) to the AcrB binding site. Analysis such as root-mean-square deviation of atomic positions and root-mean-square fluctuation, the opening of TolC, and the significant molecular mechanics with generalized Born and surface area solvation (MM-GBSA) scores associated with specific ligands were recorded. Resistance in experimental data indicated a relationship between the docking scores and some ligand-protein interactions. Results showed that there was more flexibility in the proteins within simulations conducted under standard pressure for the AcrB protein and the full tripartite complex AcrAB-TolC, showing that increased pressure causes more rigidity. MM-GBSA scores, used to calculate the free energy of ligand-protein binding, did not show a significant change, but interestingly, the strongest MM-GBSA scores were for ligands that moved to another binding pocket and did not result in resistance or opening of the efflux pump. However, the ligand moved from the binding site and did not cause the opening of TolC to increase significantly, whereas PUY and AMP were bound to the binding site for the duration of all simulations. AMP ligands under increased pressure showed the largest change in opening of the TolC efflux pump and aligns with experimental data showing E. coli cells had the most resistance to AMP after aerosolization. These results, in addition to other real-time changes such as OM proteins and mutations of targets within the cell, could be used to delineate and mitigate antibiotic resistance mechanisms.

published proceedings

  • Sci Rep

author list (cited authors)

  • Smith, B. L., Fernando, S., & King, M. D.

complete list of authors

  • Smith, Brooke L||Fernando, Sandun||King, Maria D

publication date

  • February 2024