Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles Academic Article uri icon

abstract

  • The height of the planetary boundary layer (PBL) is an important parameter that relates to the various processes associated with the PBL. In this paper, we use Global Positioning System radio occultation (GPSRO) measurements to derive a global climatology of PBL heights. Utilizing the strength of GPSRO in capturing fine vertical structures, the top of the PBL is defined to be the height at which the vertical gradient of the refractivity or water vapor partial pressure is minimum, corresponding to the height where the refractivity or water vapor pressure changes most rapidly. A sharpness parameter is defined that quantifies the applicability of these definitions. The sharpness parameter is largest over the subtropical regions characterized by strong subsidence. When the sharpness parameter is large, the refractivity and moisturebased heights are shown to converge. We derived global PBL height climatology using three years (Dec. 2006Nov. 2009) of COSMIC/FORMOSAT3 measurements and compared with values calculated from ECMWF Reanalysis Interim (ERAInt). We found that the mean PBL heights from GPSRO shared similar spatial and seasonal variations with ERAInt; however, GPSRO heights were higher by 500m. The standard deviation was also higher from GPSRO, especially in the tropics. We present detailed comparisons between GPSRO and ERAInt over the Pacific Ocean and the Sahara desert and examine the PBL height distributions as well as its annual and diurnal variabilities. These results suggest that the underlying causes of the bias between GPSRO and ERAInt likely vary from region to region.

published proceedings

  • Journal of Geophysical Research

author list (cited authors)

  • Ao, C. O., Waliser, D. E., Chan, S. K., Li, J., Tian, B., Xie, F., & Mannucci, A. J.

citation count

  • 121

complete list of authors

  • Ao, Chi O||Waliser, Duane E||Chan, Steven K||Li, Juiā€Lin||Tian, Baijun||Xie, Feiqin||Mannucci, Anthony J

publication date

  • August 2012