Interruption of Cardiac Output Does Not Affect Short-Term Growth and Metabolic Rate in day 3 And 4 Chick Embryos Academic Article uri icon

abstract

  • ABSTRACT The heart beat of vertebrate embryos has been assumed to begin when convective bulk transport by blood takes over from transport by simple diffusion. To test this hypothesis, we measured eye grow.th, cervical flexure and rates of oxygen consumption in day 34 chick embryos denied cardiac output by ligation of the outflow tract and compared them with those of embryos with an intact cardiovascular system. Eye diameter, used as the index for embryonic growth, increased at a rate of approximately 4.55 % h1 during the observation period. There was no significant difference (P<0.1) in the rate of increase in eye diameter between control (egg opened), sham-ligated (ligature present but not tied) and ligated embryos. Similarly, the normal progression of cervical flexure was not significantly altered by ligation (P<0.1). (ml O2 g1 h1) at 38 C, measured by closed respirometry, was not significantly different (P<0.1) on day 3 in sham-ligated (14.51.9 ml O2 g1 h1) and ligated 17.61.8 ml O2 g1 h1) embryos. Similarly, on day 4, in sham-ligated and ligated embryos was statistically the same (sham-ligated 10.52.9 ml O2 g1 h1; ligated 9.72.9 ml O2 g1 h1). Expressed as a linear function of body mass (M), in sham-ligated embryos was described by the equat.ion , while in ligated embryos was described by the equation . The regression line describing the relationship between body mass and for pooled sham-ligated and ligated embryos (the two populations being statistically identical) was . The slope of this regression line, which was significantly different from zero (r2=0.30, N=34, P>0.01), was similar to slopes calculated from previous studies over the same range of body mass. Collectively, these data indicate that growth and are not dependent upon cardiac output and the convective blood flow it generates. Thus, early chick embryos join those of the zebrafish, clawed frog and axolotl in developing a heart beat and blood flow hours or days before required for convective oxygen and nutrient transport. We speculate that angiogenesis is the most likely role for the early development of a heart beat in vertebrate embryos.

published proceedings

  • Journal of Experimental Biology

author list (cited authors)

  • Burggren, W. W., Warburton, S. J., & Slivkoff, M. D.

citation count

  • 51

complete list of authors

  • Burggren, Warren W||Warburton, Stephen J||Slivkoff, Mark D

publication date

  • December 2000