Functional mapping of the DNA binding domain of bovine papillomavirus E1 protein. Academic Article uri icon

abstract

  • Bovine papillomavirus type 1 (BPV-1) requires viral proteins E1 and E2 for efficient DNA replication in host cells. E1 functions at the BPV origin as an ATP-dependent helicase during replication initiation. Previously, we used alanine mutagenesis to identify two hydrophilic regions of the E1 DNA binding domain (E1DBD), HR1 (E1(179-191)) and HR3 (E1(241-252)), which are critical for sequence-specific recognition of the papillomavirus origin. Based on sequence and structure, these regions are similar in spacing and location to DNA binding regions A and B2 of T antigen, the DNA replication initiator of simian virus 40 (SV40). HR1 and A are both part of extended loops which are supported by residues from the HR3 and B2 alpha-helices. Both elements contain basic residues which may contact DNA, although lack of cocrystal structures for both E1 and T antigen make this uncertain. To better understand how E1 interacts with origin DNA, we used random mutagenesis and a yeast one-hybrid screen to select mutations of the E1DBD which disrupt sequence-specific DNA interactions. From the screen we selected seven single point mutants and one double point mutant (F175S, N184Y/K288R, D185G, V193M, F237L, K241E, R243K, and V246D) for in vitro analysis. All mutants tested in electrophoretic mobility shift assays displayed reduced sequence-specific DNA binding compared to the wild-type E1DBD. Mutants D185G, F237L, and R243K were rescued in vitro for DNA binding by the replication enhancer protein E2. We also tested the eight mutations in full-length E1 for the ability to support DNA replication in Chinese hamster ovary cells. Only mutants D185G, F237L, and R243K supported significant DNA replication in vivo which highlights the importance of E1DBD-E2 interactions for papillomavirus DNA replication. Based on the specific point mutations examined, we also assigned putative roles to individual residues in DNA binding. Finally, we discuss sequence and spacing similarities between E1 HR1 and HR3 and short regions of two other DNA tumor virus origin-binding proteins, SV40 T antigen and Epstein-Barr virus nuclear antigen 1 (EBNA1). We propose that all three proteins use a similar DNA recognition mechanism consisting of a loop structure which makes base-specific contacts (HR1) and a helix which primarily contacts the DNA backbone (HR3).

published proceedings

  • J Virol

author list (cited authors)

  • West, M., Flanery, D., Woytek, K., Rangasamy, D., & Wilson, V. G.

citation count

  • 11

complete list of authors

  • West, M||Flanery, D||Woytek, K||Rangasamy, D||Wilson, VG

publication date

  • December 2001