Maqui, Agustin Francisco (2016-05). Turbulence Generation Using Localized Sources of Energy: Direct Numerical Simulations and the Effects of Thermal Non-Equilibrium. Doctoral Dissertation. Thesis uri icon


  • Turbulence in high-speed flows is an important problem in aerospace applications, yet extremely difficult from a theoretical, computational and experimental perspective. A main reason for the lack of complete understanding is the difficulty of generating turbulence in the lab at a range of speeds which can also include hypersonic effects such as thermal non-equilibrium. This work studies the feasibility of a new approach to generate turbulence based on laser-induced photo-excitation/dissociation of seeded molecules. A large database of incompressible and compressible direct numerical simulations (DNS) has been generated to systematically study the development and evolution of the flow towards realistic turbulence. Governing parameters and the conditions necessary for the establishment of turbulence, as well as the length and time scales associated with such process, are identified. For both the compressible and incompressible experiments a minimum Reynolds number is found to be needed for the flow to evolve towards fully developed turbulence. Additionally, for incompressible cases a minimum time scale is required, while for compressible cases a minimum distance from the grid and limit on the maximum temperature introduced are required. Through an extensive analysis of single and two point statistics, as well as spectral dynamics, the primary mechanisms leading to turbulence are shown. As commonly done in compressible turbulence, dilatational and solenoidal components are separated to understand the effect of acoustics on the development of turbulence. Finally, a large database of forced isotropic turbulence has been generated to study the effect of internal degrees of freedom on the evolution of turbulence.

publication date

  • May 2016