Oelkers, Ryan James (2016-04). The Precision Analysis of Time Series Photometry and Its Application to Searches for Pre-Main-Sequence Objects. Doctoral Dissertation. Thesis uri icon

abstract

  • The past two decades have seen a significant advancement in the detection, classification and understanding of exoplanets and binary star systems. This is due, in large part, to the increase in use of small aperture telescopes (< 20 cm) to survey large portions of the night sky to milli-mag precision with rapid cadence. The vast majority of the planetary and binary systems studied consist of objects on the main sequence or the giant branch, leading to a dearth of knowledge of properties at early times (< 20 cm) to survey large portions of the night sky to milli-mag precision with rapid cadence. The vast majority of the planetary and binary systems studied consist of objects on the main sequence or the giant branch, leading to a dearth of knowledge of properties at early times (< 50 Myr). Only a dozen binaries and one possible transiting Hot Jupiter are known among pre-main sequence objects, yet these are the systems that can provide the best constraints on stellar formation and planetary migration models. The deficiency in the number of well-characterized systems is driven by the inherent and aperiodic variability found in pre-main-sequence objects which can mask and mimic eclipse signals. Nevertheless, a dramatic increase in the total number of systems at early times is required to alleviate the conflict between theory and observation. We have recently completed a photometric survey of 3 nearby (< 150 pc) and young (< 50 Myr) moving groups with a small aperture telescope. We discovered over 300 likely pre-main sequence binaries and ruled out 7 possible transiting Hot Jupiters using techniques developed by reducing crowded, defocused images from an analogous system. Using these observations we have determined a lower-limit on the migration timescale for Hot Jupiters to be 11 Myr and have identified numerous high priority pre-main-sequence binary candidates requiring further follow up.

publication date

  • April 2016